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Abstract

Analogy is one of the core capacities of human
cognition; when faced with new situations, we
often transfer prior experience from other do-
mains. Most work on computational analogy
relies heavily on complex, manually crafted
input. In this work, we relax the input require-
ments, requiring only names of entities to be
mapped. We automatically extract common-
sense representations and use them to identify
a mapping between the entities. Unlike previ-
ous works, our framework can handle partial
analogies and suggest new entities to be added.
Moreover, our method’s output is easily inter-
pretable, allowing for users to understand why
a specific mapping was chosen.

Experiments show that our model correctly
maps 81.2% of classical 2x2 analogy prob-
lems (guess level=50%). On larger prob-
lems, it achieves 77.8% accuracy (mean guess
level=13.1%). In another experiment, we show
our algorithm outperforms human performance,
and the automatic suggestions of new entities
resemble those suggested by humans. We hope
this work will advance computational analogy
by paving the way to more flexible, realistic
input requirements, with broader applicability.

1 Introduction

One of the pinnacles of human cognition is the
ability to find parallels across distant domains and
transfer ideas between them. This analogous rea-
soning process enables us to learn new information
faster and solve problems based on prior experi-
ence (Minsky, 1988; Hofstadter and Sander, 2013;
Holyoak, 1984; PJM, 1966).

The most seminal work in computational anal-
ogy is Gentner’s Structure Mapping Theory (SMT)
(Gentner, 1983) and its implementation, Structure
Mapping Engine (SME) (Falkenhainer et al., 1989).
In a nutshell, SMT assumes input from two do-
mains: base and target. It maps between objects
in a base domain and objects in a target domain

according to common relational structure, rather
than on object attributes.

For example, consider the Rutherford model of
the hydrogen atom, where the atom was explained
in terms of the (better-understood) solar system
(Falkenhainer et al., 1989): a planet revolving
around the sun is mapped to an electron revolving
around the nucleus. The mapping is due to shared
relations between objects (revolving around, being
attracted to), not object attributes (round, small).

One of the main criticisms brought against SME
and its follow-up work is their need for extensive
hand-coded input – structured representations of
both the entities and their relations (see Figure 1
for the input to the atom/solar system mapping).

Chalmers et al. (1992) argued that too much hu-
man creativity is required to construct this input,
and the analogy is already effectively given in the
representations: “A brief examination [...] shows
that the discovery of the similar structure in these
representations is not a difficult task. The repre-
sentations have been set up in such a way that the
common structure is immediately apparent. Even
for a computer program, the extraction of such
common structure is relatively straightforward.”

Some follow-up works avoid hand-coding LISP-
like representations, generating them from sketches
(Forbus et al., 2011), qualitative simulators (De-
hghani and Forbus, 2009), etc. However, they still
require much knowledge engineering, and thus are
hard to scale. Nowadays, when the web is full of in-
formation about potential domains to transfer ideas
from (McNeil Jr and Odón, 2013), such represen-
tations do not tap into the potential of web-scale
analogies for augmenting human creativity.

The method with the simplest input we are aware
of is Latent Relation Mapping Engine (LRME)
(Turney, 2008), which requires only two lists of en-
tities to be mapped. Given two entities, they search
for phrases containing both in a large corpus and
use them to generate simple patterns. For exam-
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Figure 1: SME representation of the Solar system/Rutherford atom. Reproduced from Falkenhainer et al. (1989).

ple, “a sun-centered solar system illustrates” gives
rise to patterns such as “a X * Y illustrates”. How-
ever, such patterns are extremely simple and brittle,
and LRME requires exact string matches between
the domains (so “revolve around” is different from
“rotate around”).

In this work, we develop FAME, a Flexible Anal-
ogy Mapping Engine. FAME’s input requirements
are minimal, requiring only two sets of entities.
We apply state-of-the-art NLP and IR techniques
to automatically infer commonsense relations be-
tween the entities using a variety of data sources,
and construct a mapping between the domains. Im-
portantly, we do not require identical phrasings of
relations. Moreover, our output is interpretable,
showing how the mapping was chosen.

Unlike previous works, we drop the strong bi-
jectivity assumption and let the algorithm decide
which entities to include in the mapping. Meaning,
we allow for entities to remain unmapped. Our
algorithm can also generate new suggestions for
the non-mapped entities. This paves the road to
algorithms that can handle even more limited input
– for example, using domain names (solar system,
atom) as input, or just a single mapped entity pairs
(e.g., turn white blood cells into policemen and see
how the analogy unfolds). Our contributions are:

• A novel, scalable, and interpretable approach
for automatically mapping two domains based
on commonsense relational similarities. Our
algorithm handles partial mappings and sug-
gests additional entities.

• We extend the work of Romero and
Razniewski (2020) to discover salient knowl-
edge about pairs of entities.

• Our model’s accuracy is 81.2% on simple,
2x2 problem s(guess level=50%). On larger
problems, it achieves 77.8% perfect mappings
(guess level=13.1%). In another experiment,
we outperform humans (90% vs. 70.2%) and
demonstrate that our automatic suggestions re-
semble human suggestions. We release code
and data.1

2 Problem Definition

An analogy is a mapping from a base domain B
into a target domain T . The mapping is based on
relations, and not object attributes. Base objects
are not mapped into objects that resemble them;
rather, there is a common relational structure, and
they are mapped to objects that play similar roles.
We follow the formulation of Sultan and Shahaf
(2022), brought here for completeness:

Entities and Relations. Let B = {b1, ..., bn} and T
= {t1, ..., tm} be two sets of entities. For example:
B = {sun, Earth, gravity, solar system, Newton}, T
= {nucleus, electrons, electricity, atom, Faraday}.

Let R be a set of relations. A relation is a set
of ordered entity pairs with some meaning. The
exact representation is purposely vague, as we do
not restrict ourselves to strings, embeddings, etc.
Intuitively, relations should capture notions like
“revolve around”.

In our example, relations between B and T in-
clude the Earth revolve around the Sun, like elec-
trons orbit the nucleus; the Earth creates a force
field of gravity, similar to electrons creating elec-
tric force fields; the Sun and the Earth are part of
the solar system, as the nucleus and electrons are

1https://github.com/shaharjacob/FAME

https://github.com/shaharjacob/FAME


B Mapping T
Sun → Nucleus
Earth → Electrons
Gravity → Electric force
Solar system → Atom
Newton → Faraday

Table 1: Illustration of a relational analogy between the
solar system and the atom.

part of the atom; Newton discovered gravity, as
Faraday is credited with discovering electric force.

Note that relation is an asymmetric function, as
the pairs are ordered; e.g., Newton discovered grav-
ity, but gravity did not discover Newton.

Slightly abusing notation, we denote the set of
relations that hold between two entities e1, e2 as
R(e1, e2) ⊆ 2R. For example, R(Earth, Sun)
contains {revolve around, attracted to}, etc. For
clarity, we sometimes use RB , RT to emphasize
that the entities belong to the B, T domain.

Similarity. Let sim be a similarity metric between
two sets of relations, sim : 2R × 2R → [0,∞).
Intuitively, when applied to singletons, we want
our similarity metric to capture how relations are
like each other. For example, “revolve around” is
similar to “orbit” and (to a lesser degree) “spiral”.
When applied to sets of relations, we want sim
to be higher if the two sets share many distinct
relations. For example, {revolve around, attracted
to} should be more similar to {orbit, drawn into}
than to {revolve around, orbit} (as the last set does
not include any relation similar to attraction). In
Section 3.2 we present our sim implementation.

Given one pair from B and one from T , we de-
fine similarity in terms of their relations. Since R
is asymmetric, we consider both directions:

sim∗(b1, b2, t1, t2) =

sim(RB(b1, b2),RT (t1, t2))+

sim(RB(b2, b1),RT (t2, t1))

Objective. Our goal is to output a mapping M :

B → T ∪⊥ such that no two B entities are mapped
to the same T entity (Table 1). Mapping into ⊥
means the entity was not mapped to any entity in
the T domain.

We look for the mapping M∗ that captures the
best inter-domain analogical structure similarity by

maximizing the relational similarity:

argmax
M

n−1∑
j=1

n∑
i=j+1

sim∗(bj , bi,M(bj),M(bi))

Note: if bi or bj maps to ⊥, sim∗ is defined to be
0.

3 Analogous Matching Algorithm

We wish to find the best mapping from B to T .
We first extract relations between entity pairs from
the same domain (Section 3.1). Then, we compute
the similarity between entity pairs that could be
mapped (Section 3.2). Finally, we build the map-
ping (Section 3.3).

3.1 Relation Extraction
Automatically extracting relations is a key part of
our algorithm, as it eliminates the need for exten-
sive manual curation of the input. We focus on
commonsense relations (e.g., the Earth revolves
around the Sun), as opposed to situational relations
(e.g., the book is on the table). This broadly falls
under open information extraction (OIE), the task
of generating a structured representation of the in-
formation in a text. There has been a lot of work in
this area, especially attempts to automate the con-
struction of commonsense datasets (Etzioni et al.,
2008, 2004; Yates et al., 2007; Lenat et al., 1985;
Sap et al., 2019).

Given two entities, we automatically extract re-
lations from multiple sources:
ConceptNet. A commonsense dataset, containing
about 1.5M nodes (Liu and Singh, 2004). For each
entity, we receive a list of (predicate, entity), which
we filtered to match the second entity (single or
plural form). The predicates serve as our relations.
Open Information Extraction. A database auto-
matically extracted from a large web corpus (Et-
zioni et al., 2008). It contains over 5B triplets of the
form (subject, predicate, object). We searched for a
match between both entities in the (subject, object)
fields, and used the predicates as our relations.
GPT-3 (text-davinci-001).2 We used a generative
pretrained large language model (LM) as a knowl-
edge base in a few-shot manner (Petroni et al.,
2019; Brown et al., 2020b). We input a prompt of
four analogies, e.g., “Q: What are the relations be-
tween gravity and Newton?, A: Newton discovered

2GPT-3 is the only data source that is not freely available.
All queries needed for this paper accumulated to less than $50.



Figure 2: Quasimodo++. Example regex used to ex-
tract suggestions from Google (“<question> <entity1>
.* <entity2>”). We use questions such as “Why does”,
“Why did” and “How does”.

gravity. A: Newton invented gravity.” (see Section
A.2.3 for the full prompt). GPT-3 outputs up to
three sentences per query. We kept only sentences
of the form <entity> <text> <entity>, treating the
<text> as the relation.

Quasimodo. A commonsense knowledge base that
focuses on salient properties of objects (Romero
and Razniewski, 2020). It contains more than 3.5M
triplets of (subject, predicate, object). It considers
questions instead of statements. For instance, if
people search for an answer to “Why is the sky
blue?”, this implies that the sky is blue. Whenever
our two entities appeared in the (subject, object)
fields, we extracted their predicates as relations.

Quasimodo++. A relation extraction method that
we develop, inspired by Quasimodo. Quasimodo
was constructed using questions about a single en-
tity; we extended it to questions exploring relations
between pairs of entities. We used Google’s query
auto-completion to tap into the query logs, asking
questions containing both desired entities, such as
“How does Earth * Sun”, “How is Earth * Sun”, and
“Why does Sun * Earth” for every pair of entities
(see Figure 2 for an example). The exact regular
expressions we used can be found in Section A.1.

We presented here the knowledge sources we
implemented. We note that our algorithm is easy
to extend to new sources and that we expect that its
robustness will increase with coverage.

3.2 Scoring Entity Pairs
We wish to calculate sim∗(bi, bj , tk, tp) for bi,j ∈
B, tk,p ∈ T , 1 ≤ i < j ≤ n, 1 ≤ k ̸= p ≤ m.

In Section 2 we specified desiderata of sim, es-
pecially that it is higher if the two sets share many
distinct relations. We now present our implementa-
tion of sim.

Without loss of generality, let us consider
sim(RB(b1, b2),RT (t1, t2)). We first extract all
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Figure 3: Left: partial relations of Earth:sun. Right:
partial relations of electron:nucleus. This is the result of
the maximum weighted match on the clusters. Colors
correspond to clusters.

relations RB(b1, b2),RT (t1, t2). Next, we calcu-
late the score between each relation in RB(b1, b2)
and each relation in RT (t1, t2). We create a com-
plete bipartite graph where the left side nodes are
the relations of RB(b1, b2), and the right side nodes
are the relations of RT (t1, t2) (Figure 3). The edge
weights (w) are the cosine similarity of the nodes’
sBERT embedding (Reimers and Gurevych, 2019).

We remove non-informative relations by extract-
ing the top-frequent n-grams (n = {1, 2, 3, 4})
from Wikipedia and setting their score to zero.
Edges that did not reach a threshold (chosen us-
ing hyper-parameter search, see Section 3.3) were
set to zero.

Next, we cluster similar relations on each side
(e.g., “revolve around” and “circle around”) to
avoid double-counting. We use hierarchical ag-
glomerative clustering based on the cosine embed-
ding similarity (threshold = 0.5; see Section 3.3).
The weight of edges between two clusters is the
maximal weight of an edge between their nodes
(see Figure 3; colors correspond to clusters).

Finally, we apply Maximum-Weight Bipartite
Matching on the clusters (see Section 3.3). The
similarity score sim(RB(b1, b2),RT (t1, t2)) is de-
fined as the sum of the remaining edges.

3.3 Building a Mapping

Using the score mappings between pairs, we can
compose larger mappings. We use beam-search,
starting from the most promising pair-mappings
found in Section 3.2. In each iteration, we expand
the 20 most promising partial mappings, testing
each possible mapping between single entities of B



Figure 4: A snippet from our UI. Top: Input. Bottom: The mapping our algorithm found (output), is represented as
a graph. Nodes correspond to mappings between single entities (e.g., sun to nucleus). Each edge is annotated with
some of the shared relations between the mapped pairs corresponding to its endpoints and their similarity score. For
the sake of visualization, we show at most two relations for each edge. Edge weight corresponds to strength.

and T (that are consistent with the current partial
mapping – i.e., a B entity cannot map to multiple
T entities). When expansions stop increasing the
score, we stop the search and select the mapping
with the highest score.

Figure 4 shows a snippet from our UI. Input ap-
pears on the top. FAME’s output mapping is repre-
sented as a graph: nodes correspond to single entity
mappings (e.g., Sun to nucleus). Edges represent
the shared relational structure. Each edge contains
some of the shared relations between the mapped
pairs corresponding to its endpoints (e.g., “more
massive than”) and their similarity score (note the
edges are directional). To ease visualization, we
show at most two relations per edge. The thickness
of an edge corresponds to its weight.

A note on the solution space.
In previous works n = m and M is a bijective

function. Meaning, M is both injective (one-to-
one; each element in the target is the image of
at most one element in the source) and surjective
(onto; all the target terms are covered). In other
words, no entity is left unmapped. In that case, the
solution space’s cardinality is n!.

We allow for n ̸= m and for entities to remain
unmapped. Without loss of generality let n ≤
m. The cardinality is then

(∑n
i=0

(
n
i

)
m!

(m−i)!

)
−

(n ·m), where i is the number of matched entities.
We subtract n · m because we do not allow for a
mapping of size 1; our algorithm starts by mapping
pairs and then adds single-entity mapping at each
iteration of the beam search.

This relaxation of the bijective constraint drasti-
cally increases the space; for n = 7, n! = 5, 040,

while our space is of size 130, 922.

Hyper-Parameter Search. We constructed a new
dataset to set our model’s hyper-parameters (See
Appendix A). The dataset contains 36 analogical
mapping problems created by ten volunteers, not
from our research team. We showed them example
analogies and asked them to generate new ones. An
expert from our team verified their output, discard-
ing 4 analogies. Domain size varied between 3 to
5 (average size=3.4).

On the problems generated by the volunteers,
FAME achieves 83.3% perfect mappings (the whole
mapping is correct). If we consider single map-
pings separately, it achieves 89.4% accuracy.

4 Entity Suggestion

One of the main limitations of previous analogical
mapping algorithms is their inability to automati-
cally expand analogies. This is especially interest-
ing in our case, as we allow for unmapped entities;
thus, suggesting new entities could identify poten-
tial mapping candidates for the unmapped entities.

For example, let B = {Sun, Earth, gravity, New-
ton} and T = {nucleus, electron, electricity}. The
correct mapping is Sun → nucleus, Earth → elec-
tron, gravity → electricity, leaving Newton with no
mapping. Our goal is to suggest candidate entities
that preserve the relational structure.

Intuitively, we look at the relations Newton
shares with other B entities (e.g., discovered grav-
ity), and try to see which T entity plays a corre-
sponding role (i.e., who discovered electricity?).

More formally, suppose we wish to find candi-
dates t∗ for mapping to bn. We first extract the



Sources Near Far Extended
All 85% 77.5% 77.8%

All-ConceptNet 85% 77.5% 77.8%
All-Open IE 85% 67.5% 58.3%
All-Quasimodo 85% 77.5% 72.2%
All-Quasimodo++ 80% 72.5% 72.2%
All-GPT-3 57.5% 50% 66.7%

Table 2: Ablation study on the 2x2 near and far problems
and our extended set, leaving out knowledge sources.
Results show the importance of the generative LM ap-
proach (GPT-3.5) as a knowledge source. Open Infor-
mation Extraction also contributes much, especially for
the complex analogies (2x2-far and extended).

relations of Rb(bi, bn), ∀i ∈ [n] (denoted as Rbi).
We then iterate over all relations r ∈ Rbi and use
the pair {M(bi), r} to extract suggestions for t∗.

We use Open Information Extraction, Quasi-
modo, and Quasimodo++. While our method was
previously used to extract relations given a pair of
two entities, we now use it to extract entities given
a pair of {entity, relation}. This entails filtering
on the predicate field in our commonsense datasets
and changing the queries in Quasimodo++.

As suggestions tend to be noisy, we cluster all
extracted entities (similarly to the clustering from
Section 3.2). We remove clusters of size < 2.

For each suggestion cluster, we rerun our anal-
ogous matching algorithm with a representative
entity from that cluster (the closest to the cluster’s
center of mass). We pick the cluster whose repre-
sentative resulted in the mapping with the highest
score. As the commonsense datasets we work with
operate mostly on string matching, small changes
(e.g., Benjamin Franklin/Ben Franklin) could some-
times result in slightly different results. Thus, we
perform one final round, with all entities from our
chosen cluster, and pick the highest score map-
ping.

5 Evaluation

In this section, we evaluate FAME. We test its
ability to identify the correct mapping (Section 5.1),
and compared it to both related works (Section 5.2)
and human performance (Section 5.3).

5.1 Performance on Analogy Problems

2x2 problems. One of the things that might have
held computational analogy back is the lack of
high-quality, large-scale datasets. Most datasets

are small and focus on classical 2x2 problems (A :
B :: C : D), similar to SAT questions.

We start by testing FAME on this standard type
of analogies. We use 80 problems from Green
et al. (2010), split into 40 near and 40 far analogies
(e.g., for “answer:riddle”, near analogy is “solu-
tion:problem”, far analogy is “key:lock”). While
the dataset is small, we believe it is still interesting
to explore. Our algorithm managed to perfectly
map 85% of near analogies and 77.5% of far ones.
Random guess baseline is 33.3% (see Section 3.3).

Extended problems. Encouraged by the results of
the 2x2 problems, we explore more complex prob-
lems. We decided to extend the Green far analogies
(which are harder than the near ones). We had three
experts go over the dataset together and brainstorm
potential extensions. On four problems, the ex-
perts did not manage to agree on any additional
mappings, leaving us with 36 extended problems
(average domain size 3.3).

Our algorithm perfectly mapped 77.8% of the
extended problems. Random baseline is 13.1%
on average. As we relax the bijection assumption,
FAME’s average guess level is even lower – 2.2%
(see Section 3.3). If we look beyond the top-rated
solution, our algorithm has the correct solution in
its top-2 guesses 83.3% of the time and 91.7% for
top-3.

Error analysis. We found 3 main causes of error:
• Coverage (for example, we could not find a re-

lation between “hoof” and “hoofprint”). This
prompted us to ablate the knowledge sources
FAME uses (Table 2). Results show the impor-
tance of the generative LM approach. Open
IE is also important, especially for the more
complex analogies (far and extended). Some
sources, such as ConceptNet, did not seem to
contribute much.

• Noisy relations that are either peculiar or
plain wrong (e.g., “a footballer can iron”).

• Embedding similarity (for example, “pro-
duce” and “is produced by” have a high simi-
larity score). This is exacerbated by ambigu-
ity (e.g., the word “pen” referred to “pigpen”
and not to the writing instrument).

5.2 Comparison to Related Work

SME line of work. We had difficulty comparing
FAME to SME (Falkenhainer et al., 1989) and its ex-
tensions, due to their complex input requirements.
LRME (Turney, 2008) is closest to our setting, but



no code or demo is available. Thus, we compare to
their published results on a set of 20 problems.

LRME’s entities include nouns, verbs, and ad-
jectives. Since FAME expects noun phrases, we
filtered out all other input terms (one problem has
only a single noun, so we are left with 19 prob-
lems). It is hard to compare in this setup (and
unfortunately, authors did not report which partial
mappings were correct). Still, LRME’s accuracy
was 75%, whereas FAME achieved 84.2%.

While the size of the problems is smaller when
restricted to nouns, we believe the noun-only set-
ting is harder. The verbs and adjectives often pro-
vide hints that significantly constrain the search
space. For example, in problem A6 (Turney, 2008)
(mapping a projectile to a planet) there is one adjec-
tive in each domain (parabolic, elliptical). Those
adjectives can only apply to one or two of the nouns
(i.e., you cannot have parabolic earth, air, or grav-
ity), effectively giving away the noun mapping.

As a side note, we also believe that our noun-
only input is a cleaner problem setting, as it is
often easier to automatically identify the entities in
a domain than to identify the attributes and verbs
relevant for the analogy. In the words of LRME’s
authors, “LRME is not immune to the criticism
of Chalmers et al. (1992), that the human who
generates the input is doing more work than the
computer that makes the mapping.” We believe
FAME is a step in the right direction in this regard.

Pretrained LMs. In the absence of a baseline, we
turn to a generative pretrained large LM known to
have impressive commonsense abilities – GPT-3.5
(text-davinci-002). We used 4 random examples
from the hyper-parameter search dataset. After
some experimentation with prompt engineering,
we chose two variants (see A.2.3).

The results are summarized in Table 3. GPT-3.5
does well on the 2x2 datasets (Green et al., 2010).
However, both datasets appear on the web, and per-
haps GPT-3.5 was exposed to them during training
(data leakage). In particular, we found some of the
answers via a simple web search (Figure A.6).

Moreover, GPT-3.5’s performance drops on the
extended set, where problems are complex and do
not appear on the web. Interestingly, it does not
even manage to return a valid mapping in some of
the cases. This exercise improves our understand-
ing of FAME’s strengths and weaknesses.

E-KAR dataset. Chen et al. (2022) recently re-
leased a relevant dataset, E-KAR, for rationaliz-

Algorithm Near Far Extended
FAME 85.0% 77.5% 77.8%
GPT-3.5 “:” 92% 80% 44%
GPT-3.5 “–>” 88% 80% 58%

Table 3: Comparison of FAME and GPT-3.5. GPT-3.5
does well on the 2x2 datasets (far and near). We note
that data leakage is a concern. GPT-3.5’s performance
sharply drops on the extended problem set, where prob-
lems are bigger and do not appear on the web.

ing analogical reasoning. The dataset consists
of multiple-choice problems from civil service
exams in China. For example, for the source
triplet “tea:teapot:teacup”, the correct answer is
“talents:school:enterprise”. The reasoning is that
both teapot and teacup are containers for tea. After
the tea is brewed in the teapot, it is transported into
the teacup. Similarly, both school and enterprise
are organizations. After talents are educated in
school, they are transported into enterprise.3

The E-KAR test set has no labels, so we used
their validation set (N=119) to test FAME. As our
task is different, we only took source entities (as B)
and entities from the correct answer (as T ). We fil-
tered questions without nouns, resulting in N=101.

FAME found the right mapping 68.3% of the
time. A closer examination of FAME’s mistakes re-
vealed that ∼ 75% of them occurred due to relation
types that are not at all covered by our framework:
either ternary relations (soldier:doctor:military doc-
tor → car:electric vehicle:electric car; the last term
is a combination of the first two) or relations based
on sharing some attribute (so “both containers
for holding tea” is mapped to “both are organi-
zations”). Some of the attribute-based mappings
work at the whole-set level, so each entity on B
could map to each entity on T (yellow:red:white
→ sad:happy:angry). Thus, we conclude there is a
big gap between FAME and E-KAR’s assumptions.

5.3 Comparison to People
We compare FAME with human thinking in a 2-
phase experiment.4 In the closed-world phase, the
participants received ten structure mapping prob-
lems, in which they were asked to match instances
from B to T . The domains included between 3-5

3Interestingly, the authors of this paper thought that the
“passengers:bus:taxi” answer was the correct one, based on
containment and size relations.

4The experiment received ethics committee approval. See
full instructions in Section A.4.



entities (Table A.4). Participants were instructed to
map each B entity into exactly one T entity.

In the open-world phase, participants received
five mapped problems, but one entity was left blank
(Table A.5). Participants were instructed to fill in
the blank with an entity that preserves the analogy.
Participants. We recruited 304 participants using
social media. The compensation was a chance to
win one of three $30 vouchers. 76.6% of our par-
ticipants were between the ages 18-35 and 17.2%
are between 36-45 (self-reported).
Closed-world mapping. FAME missclassified one
problem compared to gold standard (A9, Table
A.4), achieving 90% accuracy (human baseline was
70.2%; see full distribution in Table A.4).

Problem A6 has the lowest human accuracy
(35.5%), and is also the largest one (|B| = |T | =
5). A closer examination of its confusion matrix
reveals that while FAME correctly mapped water to
heat and pressure to temperature, 15% of people
switched the two. This might be due to the strong
semantic pairing of water and temperature. FAME

is immune to this, as it relays on relations.
On average, each participant mapped the prob-

lem the same as FAME 78% of the times. Overall,
FAME outperforms humans, and most of the dis-
agreement is due to human errors.
Open-world entity suggestion. We presented par-
ticipants with five mapped problems where one
entity was left blank (Table A.5) and asked them to
fill in the black while preserving the analogy.

For all five problems, an entity from FAME’s top
two completions appeared in humans’ top three
completions (Table A.6). Meaning, our algorithm’s
top suggestions are similar to humans’. Only in
one example (B5) one of the top two algorithm’s
completions appeared third in humans’ (in the rest
it is first or second). We suspect that this confu-
sion in B5 occurred because gravity and Newton
reminded participants of the term apple.

Figure 5 shows a word cloud for answers to prob-
lem B1. While most responses are quite similar,
some participants returned creative and appropriate
solutions (e.g., treasure chest, jewelry box, car).

6 Related Work

Computational analogy-making dates back to the
1960s (Evans, 1964; Reitman, 1965). Analogy-
making approaches are broadly categorized as sym-
bolic, connectionist, and hybrid (French, 2002;
Mitchell, 2021; Gentner and Forbus, 2011).

Figure 5: Word cloud of human completions for B1
(Table A.6). While most responses were from the same
semantic domain, some were creative and appropriate
(e.g., treasure chest, jewelry box, car).

Symbolic approaches usually represent input as
structured sets of logic statements. Our work falls
under this branch, as well as SME (Falkenhainer
et al., 1989) and its follow-up work. LRME (Tur-
ney, 2008) is the closest to our work, as it automat-
ically extracts the relations. Unlike FAME, LRME
requires exact matches of relations across different
domains. We also focus on nouns only, making the
problem harder, and relax the bijection assumption,
allowing for automatically extending analogies.

NLP. Analogy-making received relatively little at-
tention in NLP. The best-known task is word analo-
gies, often used to measure embeddings’ quality
(inspired by Word2Vec’s “king - man + woman =
queen” example (Mikolov et al., 2013)). Follow-up
work explored embeddings’ linear algebraic struc-
ture (Arora et al., 2016; Gittens et al., 2017; Allen
and Hospedales, 2019) or compositional nature
(Chiang et al., 2020), neglecting relational similar-
ity. A recent work on analogies between procedural
texts (Sultan and Shahaf, 2022) did study relational
similarity, but extracted the relations from the input
texts, with no commonsense augmentations.

Recently, there have been efforts to study LMs’
analogical capabilities (Ushio et al., 2021; Brown
et al., 2020a). Findings indicate they struggle with
abstract and complex relations and results depend
strongly on LM’s architecture and parameters.

Kittur et al. (2019) combined NLP and crowds
for product analogies without explicitly modeling
entities and relations, but instead automatically ex-
tracting schemas of the product.

7 Conclusions and Future Work

Detecting deep structural similarity across distant
domains and transferring ideas between them is
central to human thinking. We presented FAME,



a novel method for analogy making. Compared
to previous works, FAME is more expressive, scal-
able, robust and interpretable. It also allows partial
matches and automatic entity suggestions to extend
the analogies.

FAME correctly maps 81.2% of classical 2x2
analogy problems. On larger problems, it
achieves 77.8% perfect mappings (mean guess
level=13.1%). FAME also outperforms humans
in solving analogy mapping problems (90% vs.
70.2%). Interestingly, our automatic suggestions of
new entities resemble those suggested by humans.

In future work, we plan to improve coverage and
extend our framework to more than just binary re-
lations, as sometimes the key to an analogy is a
relation involving more than two objects. In addi-
tion, we plan to improve our similarity measure,
to address both context (to solve ambiguity) and
the difference between active and passive relations.
We plan to explore different forms of input, such as
algorithms that take as input very partial domains,
perhaps even just domain names (e.g., solar system,
atom) and populate the domains with entities, or
algorithms incorporating user feedback.

To conclude, we hope FAME will pave the way
for analogy-making algorithms that require less-
restrictive inputs and can scale up and tap into the
vast amount of potential inspiration the web offers,
augmenting human creativity.

8 Ethical Considerations & Limitations

While FAME can assist humans by inspiring non-
trivial solutions to problems, it has been shown
that humans struggle with detecting caveats in pre-
sented analogies (Holyoak et al., 1995). For ex-
ample, the cardiovascular system is often taught to
medical students in terms of water supply system
(Swain, 2000). However, this analogy might also
confuse them, as it ignores important differences
between water and blood (e.g., blood clots). Thus,
while our output is interpretable, it might still mis-
lead people, and it is important to alert the users to
this possibility.

Another issue is the fact that FAME’s coverage
highly depends on external resources (ConceptNet,
Google AutoComplete, etc.). This might be particu-
larly problematic when applied to low-resource lan-
guages. As the relations we look for are common-
sense relations, rather than cultural or situational
ones, using automatic translation might ameliorate
the problem.

Lastly, we also note these resources evolve over
time, and thus if one is interested in reproducibility,
it is necessary to save snapshots of the extracted
relations.

Acknowledgements

We thank the reviewers for their insightful com-
ments. This work was supported by the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation pro-
gramme (grant no. 852686, SIAM).

In memory of the more than one thousand
victims of the horrific massacre carried out
by Hamas terrorists on October 7th, 2023.

References
Carl Allen and Timothy Hospedales. 2019. Analogies

explained: Towards understanding word embeddings.
In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 223–231. PMLR.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2016. A latent variable model
approach to pmi-based word embeddings. Transac-
tions of the Association for Computational Linguis-
tics, 4:385–399.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020a.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020b. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

David J Chalmers, Robert M French, and Douglas R
Hofstadter. 1992. High-level perception, representa-
tion, and analogy: A critique of artificial intelligence
methodology. Journal of Experimental & Theoreti-
cal Artificial Intelligence, 4(3):185–211.

https://proceedings.mlr.press/v97/allen19a.html
https://proceedings.mlr.press/v97/allen19a.html
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


Jiangjie Chen, Rui Xu, Ziquan Fu, Wei Shi, Zhongqiao
Li, Xinbo Zhang, Changzhi Sun, Lei Li, Yanghua
Xiao, and Hao Zhou. 2022. E-kar: A benchmark for
rationalizing natural language analogical reasoning.
arXiv preprint arXiv:2203.08480.

Hsiao-Yu Chiang, Jose Camacho-Collados, and Zachary
Pardos. 2020. Understanding the source of semantic
regularities in word embeddings. In Proceedings of
the 24th Conference on Computational Natural Lan-
guage Learning, pages 119–131, Online. Association
for Computational Linguistics.

Morteza Dehghani and Ken Forbus. 2009. Qcm: A qp-
based concept map system. In the 23nd International
Workshop on Qualitative Reasoning (QR09), pages
16–21.

Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S Weld. 2008. Open information extrac-
tion from the web. Communications of the ACM,
51(12):68–74.

Oren Etzioni, Michael Cafarella, Doug Downey, Stan-
ley Kok, Ana-Maria Popescu, Tal Shaked, Stephen
Soderland, Daniel S Weld, and Alexander Yates.
2004. Web-scale information extraction in know-
itall: (preliminary results). In Proceedings of the
13th international conference on World Wide Web,
pages 100–110.

Thomas G Evans. 1964. A heuristic program to solve
geometric-analogy problems. In Proceedings of the
April 21-23, 1964, spring joint computer conference,
pages 327–338.

Brian Falkenhainer, Kenneth D Forbus, and Dedre Gen-
tner. 1989. The structure-mapping engine: Algo-
rithm and examples. Artificial intelligence, 41(1):1–
63.

Kenneth Forbus, Jeffrey Usher, Andrew Lovett, Kate
Lockwood, and Jon Wetzel. 2011. Cogsketch:
Sketch understanding for cognitive science research
and for education. Topics in Cognitive Science,
3(4):648–666.

Robert M French. 2002. The computational modeling
of analogy-making. Trends in cognitive Sciences,
6(5):200–205.

Dedre Gentner. 1983. Structure-mapping: A theoretical
framework for analogy. Cognitive science, 7(2):155–
170.

Dedre Gentner and Kenneth D Forbus. 2011. Compu-
tational models of analogy. Wiley interdisciplinary
reviews: cognitive science, 2(3):266–276.

Alex Gittens, Dimitris Achlioptas, and Michael W Ma-
honey. 2017. Skip-gram- zipf+ uniform= vector addi-
tivity. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 69–76.

Adam E Green, David JM Kraemer, Jonathan A Fugel-
sang, Jeremy R Gray, and Kevin N Dunbar. 2010.
Connecting long distance: semantic distance in ana-
logical reasoning modulates frontopolar cortex activ-
ity. Cerebral cortex, 20(1):70–76.

Douglas R Hofstadter and Emmanuel Sander. 2013. Sur-
faces and essences: Analogy as the fuel and fire of
thinking. Basic books.

Keith J Holyoak. 1984. Analogical thinking and human
intelligence. Advances in the psychology of human
intelligence, 2:199–230.

Keith J Holyoak, Paul Thagard, and Stuart Sutherland.
1995. Mental leaps: analogy in creative thought.
Nature, 373(6515):572–572.

Aniket Kittur, Lixiu Yu, Tom Hope, Joel Chan, Hila
Lifshitz-Assaf, Karni Gilon, Felicia Ng, Robert E
Kraut, and Dafna Shahaf. 2019. Scaling up analogi-
cal innovation with crowds and ai. Proceedings of the
National Academy of Sciences, 116(6):1870–1877.

Douglas B Lenat, Mayank Prakash, and Mary Shep-
herd. 1985. Cyc: Using common sense knowledge
to overcome brittleness and knowledge acquisition
bottlenecks. AI magazine, 6(4):65–65.

Hugo Liu and Push Singh. 2004. Conceptnet—a practi-
cal commonsense reasoning tool-kit. BT technology
journal, 22(4):211–226.

Donald G McNeil Jr and Mr Odón. 2013. Car mechanic
dreams up a tool to ease births. The New York Times,
13.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
Advances in neural information processing systems,
26.

Marvin Minsky. 1988. Society of mind. Simon and
Schuster.

Melanie Mitchell. 2021. Abstraction and analogy-
making in artificial intelligence. Annals of the New
York Academy of Sciences, 1505(1):79–101.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An-
ton Bakhtin, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

PJM. 1966. Models and analogies in science.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Walter Ralph Reitman. 1965. Cognition and thought:
an information processing approach.

https://doi.org/10.18653/v1/2020.conll-1.9
https://doi.org/10.18653/v1/2020.conll-1.9


Julien Romero and Simon Razniewski. 2020. Inside
quasimodo: Exploring construction and usage of
commonsense knowledge. In Proceedings of the
29th ACM International Conference on Information
& Knowledge Management, pages 3445–3448.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A Smith, and Yejin Choi. 2019.
Atomic: An atlas of machine commonsense for if-
then reasoning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
3027–3035.

Oren Sultan and Dafna Shahaf. 2022. Life is a circus
and we are the clowns: Automatically finding analo-
gies between situations and processes. Proceedings
of the 2022 conference on empirical methods in natu-
ral language processing (EMNLP).

David P Swain. 2000. The water-tower analogy of
the cardiovascular system. Advances in Physiology
Education, 24(1):43–50.

Peter D Turney. 2008. The latent relation mapping
engine: Algorithm and experiments. Journal of Arti-
ficial Intelligence Research, 33:615–655.

Asahi Ushio, Luis Espinosa Anke, Steven Schockaert,
and Jose Camacho-Collados. 2021. Bert is to nlp
what alexnet is to cv: Can pre-trained language mod-
els identify analogies? In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3609–3624.

Alexander Yates, Michele Banko, Matthew Broadhead,
Michael J Cafarella, Oren Etzioni, and Stephen Soder-
land. 2007. Textrunner: open information extraction
on the web. In Proceedings of Human Language
Technologies: The Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL-HLT), pages 25–26.



A Implementation Details

We fine-tune our model using 36 problems de-
scribed in Section 3.3.

We used the pre-trained model msmarco-
distilbert-base-v4 which is based on sBERT
(Reimers and Gurevych, 2019). We set the sim-
ilarity threshold (the similarity between two rela-
tions) to be 0.2 (range checked: 0-0.6). We set
the number of top n-grams which was filtered (the
top frequencies n-grams in Wikipedia) to 500. The
clustering distance threshold is set to 0.5 (range
checked: 0.3-0.9). The number of clusters we con-
sider when computing the sum is set to 3 (range
checked: 1-maximum number of clusters). We set
the beam search size to 20 (range checked: 1-40).
All of these parameters describes in Section 3.

We provide access to our anonymous repository
can be found1. We note that the usage of Docker
is not supported in this version for the purpose of
maintaining anonymity. However, the algorithmic
content is available.

A.1 Quasimodo++ regular expressions

We use the following regex for our Quasimodo++:
“<question> <prefix> <entity1> .* <entity2>”. The
questions we used are: {“why do”, “why is”, “why
does”, “why does it”, “why did”, “how do”, “how
is”, “how does”, “how does it”, “how did”}. The
prefix is optional and can be {“a”, “an” and “the”}.
We use both singular and plural forms of the enti-
ties.

A.2 GPT-3

A.2.1 Prompts used for relation extraction
The prompt used for GPT-3 is:
Q: What are the relations between a blizzard and
snowflake?
A: A blizzard produces snowflakes.
A: A blizzard contains a lot of snowflakes.

Q: What are the relations between an umbrella and
rain?
A: An umbrella protects from rain.
A: An umbrella provides adequate protection from
rain.

Q: What are the relations between a movie and
screen?
A: A movie displayed on a screen.
A: A movie can be shown on a screen.

Figure 6: Looking for analogies from the original Green
eval dataset online.

Q: What are the relations between Newton and
gravity?
A: Newton discovered gravity.
A: Newton invented gravity.

Q: What are the relations between an electron and
nucleus?
A: An electron revolves around the nucleus.
A: An electron is much smaller than the nucleus.
A: An electron attracts the nucleus.

Q: What are the relations between water and a pipe?
A: Water flows through the pipe.
A: Water passes through the pipe.

A.2.2 Prompts used for baseline comparison
After some experimentation with prompt engineer-
ing, we chose two variants of the prompt:
Q: Find an analogical mapping between the entities

“eraser”, “paper” and “pencil” and the entities
“keyboard”, “delete” and “screen”.
A: eraser:pencil:paper::delete:keyboard:screen

(or)
A: eraser -> delete, pencil -> keyboard, paper
-> screen

A.2.3 Possible leakage
Example answers for chosen analogies from Green
eval dataset found via a simple web search can be
found in Figure 6

A.3 Repository

To ease the access and usage of our code we use
Docker. Its main goal is to shift the cross-platform
installation burden from the user to the developer.
Unfortunately, we cannot share our Docker due to



anonymity concerns (username). We will include
it in the non-anonymized version.

We provide a React based web interface, cur-
rently available only locally. This system is used
to visualize the graphs created by the algorithm’s
mapping output. In addition, it visualizes the re-
lations between entities, their similarity, and the
clustering. This interface is useful for assisting in
developing, debugging and understanding the algo-
rithm’s output. The demo is accessible using our
repository1.

A.4 Experiments
Snippets of the experimental setup (including in-
structions) can be found in Figures 7, 8.

Table 4 depicts the ten analogical proportion
problems used in the structure mapping experiment
(closed-world mappings in Section 5.2). Accuracy
denotes the percentage of human participants who
mapped from B to T correctly. Results show this
task is non-trivial even for humans.

Table 6 illustrates the experimental setup for the
second phase of our experiment, in which partici-
pants received a solved mapping problem with one
entity left out (open-World in Section 5.2).

Table 5 contains all solved analogy problems
used in the second phase of the experiment (entity
suggestion, see open-World in Section 5.2). Partic-
ipants were given with the complete mapping, but
with a missing entity (as presented here).

A.5 E-kar
Table 7 shows an example of a problematic problem
from E-KAR dataset.



Figure 7: Closed-World Mapping: Experiment instructions with the first question.

Figure 8: Open-World Entity Suggestion: Experiment instructions with the first question.



B Mapping T
Human Accuracy

(Guess Level)

A1

Baker

→

Scientist
79.6%
(4.2%)

Cake Discovery
Recipe Research
Ingredients Data

A2
Eraser

→
Amnesia

71.7%
(16.7%)Pencil Memory

Paper Mind

A3
Jacket

→
Wound

68.8%
(16.7%)Zipper Suture

Cold Infection

A4
Train

→
Signal

74.0%
(16.7%)Track Wire

Steel Copper

A5
Thoughts

→
Astronaut

53.9%
(16.7%)Brain Space

Neurons Stars

A6

Water

→

Heat

35.5%
(0.8%)

Pressure Temperature
Bucket Kettle
Pipe Iron
Rain Sun

A7

Waves

→

Sounds
65.1%
(4.2%)

Water Air
Shore Ear
Breakwater Earplugs

A8

Goal

→

Basket
94.1%
(4.2%)

Soccer Basketball
Grass Hardwood
Feet Hands

A9
Seeds

→
Ideas

64.5%
(16.7%)Fruit Product

Bloom Success

A10

Morning

→

Evening
95.1%
(4.2%)

Breakfast Dinner
Start End
Coffee Wine

Table 4: The ten analogical proportion problems used in the structure mapping experiment. Accuracy denotes the
percentage of human participants who mapped from B to T correctly. Note that each row under the B column is
mapped to its T column. Problem’s guess level appears in brackets below the accuracy. Results show this task is
non-trivial even for humans.

B Mapping T
Electrons → Earth
Electricity → Gravity
Faraday → Newton
Nucleus → ?

Table 5: Solved mapping problem with one missing T entity. Participants instructed to fill in the missing entity.



B T Algorithm Humans

B1

Answer

→

Key
Logic Mechanism
Riddle ?

Problem
Lock

Feedback

Lock (58.9%)
Door (11.8%)

Question (4.6%)

B2

Earth

→

Electrons
Gravity Electricity
Newton Faraday
? Nucleus

Sun
Moon
Mars

Earth’s core (15.8%)
Apple (13.2%)
Sun (10.2%)

B3

Stylist

→

Landscaper
Hair Lawn
Gel ?

Fertilizer
Water
Lime

Fertilizer (29.3%)
Lawn Mower (21.1%)

Shears (10.2%)

B4

Chef

→

Baker
Meal Cake
Pan Oven
Salt ?

Butter
Sugar
Onion

Sugar (63.5%)
Flour (6.9%)

Pepper (3.3%)

B5

Sun

→

Rain
Summer Winter
Sunscreen ?

Umbrella
Birds

Flooding

Umbrella (51.0%)
Coat (20.7%)
Cream (9.9%)

Table 6: Examples used in the second phase of the experiment. Participants were given with the complete mapping,
but with a missing entity (as presented here). The algorithm top three completions are sorted according to certainty.
Humans’ top three completions are sorted according to their frequency in the experiment (in brackets).



B Mapping T
Ice → Grass
Fog → Tree

Table 7: "ice" and "fog" are different forms of the same
substance, and both "ice" and "fog" are natural objects.".
"grass" and "tree" are both plants, and "grass" and "tree"
are both natural objects.


