
O B TA I N I N G  D ATA  H A S  become the key bottleneck in 
many machine-learning (ML) applications. The rise 
of deep learning has further exacerbated this issue. 
Although high-quality ML models are finally making 
the transition from expensive-to-develop, highly 
specialized code to something more like a commodity, 
these models involve millions (or even billions) of 
parameters and require massive amounts of data to 
train. Thus, the dominant paradigm in ML today is to 
create a new (large) dataset whenever facing a novel 
task. In fact, there are now entire conferences dedicated 
to the creation of new data resources (for example, the 
International Conference on Language Resources and 
Evaluation or resource papers at CIKM).

While this approach resulted in 
significant advances, it suffers from a 
major caveat, as collecting large, high-
quality datasets is often very demand-
ing in terms of time and human re-
sources. For several tasks, such as rare 
disease detection, large datasets are 
nearly infeasible to construct.

While there has been much effort sug-
gesting workarounds to this data-bottle-
neck problem, they are scattered across 
many different subfields, often unaware 
of one another. There exist many meth-
od-specific and domain-specific surveys, 
but broader, big-picture surveys are dif-
ficult to find. The closest in spirit to our 
work is Roh et al.,33 which focuses more 
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on the data management point of view 
and the early stages of the pipeline.

In this article, we aim to bring order 
to this area. Our main contribution is 
a simple yet comprehensive taxonomy 
of ways to tackle the data bottleneck. 
We survey major research directions 
and organize them into a taxonomy in 
a way designed to be useful for practi-
tioners choosing between different ap-
proaches. The emphasis here is not on 
covering methods in depth; rather, we 
discuss the main ideas behind various 
methods, the assumptions they make 
and their underlying concepts. For each 
topic, we mention several important or 
interesting works, and refer the inter-

ested reader to surveys where possible.
We wish to first raise awareness of 

the methods that already exist, to en-
courage more efficient use of data. In 
addition (and perhaps more impor-
tantly), we hope the organization of 
the taxonomy would also reveal gaps 
in current techniques and suggest 
novel directions of research that could 
inspire the creation of new, less data-
hungry learning methods.

Taxonomy
A note on scope. The data-bottleneck 
problem is widespread across the field 
of machine learning. It is especially cru-
cial in supervised learning but applies 

 key insights
 ˽ Recent machine learning algorithms  

are increasingly data-hungry.  
A widespread approach is to construct 
large, task-specific datasets,  
which is inefficient and sometimes 
infeasible.

 ˽ Many ways to tackle this data  
bottleneck problem have been proposed, 
but they are scattered across different 
subfields.

 ˽ We present a practitioner-centric 
taxomony of these methods. We distill 
each method’s main assumptions and 
explain when it is useful, in hopes 
of encouraging more efficient use of 
resources as well as uncovering novel 
research directions.
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various preexisting datasets such as 
CelebA, Place2, and ImageNet,39 where 
the same image splits into both X and Y 
(sometimes in more than one way).

Of course, it is also possible to re-
purpose a dataset created with no 
machine-learning task in mind at all: 
for example, Bertero and Fung6 used a 
dataset of TV sitcoms for a supervised 
humor detection task, with recorded 
laughter serving as labels.

Data augmentation

Perform transformations on X to 
enlarge the dataset.

Data augmentation is a common ap-
proach for generating more data; it 
artificially inflates the training set by 
applying modifications. This method’s 
initial goal was to prevent overfitting.

Data augmentation often employs 
vicinal risk minimization (VRM).48 In 
VRM, human knowledge is needed to 
define a neighborhood around each 
example in the training data, and vir-
tual examples are drawn from this vicin-
ity distribution. It is easiest to demon-
strate this idea in the field of computer 
vision; there, common augmentations 
are geometric transformations such as 
flipping, cropping, scaling, and rotating 
(see Figure 2). The idea is to make the 
classifier invariant to change in position 
and orientation. Similarly, photometric 
transformations amend the color chan-
nels to make the classifier invariant to 
change in lighting and color.

Data augmentation leads to im-
proved generalization, especially with 
small datasets3 or when the dataset 
is unbalanced (instead of under sam-
pling, which is data-inefficient).

Augmentation methods have seen 

to unsupervised paradigms as well. In 
this work we focus on the supervised, 
unsupervised, and semi-supervised set-
tings. Reinforcement learning is gener-
ally beyond the scope of this article, al-
though some of the methods we present 
are applicable to it.

We start with a high-level view of 
our taxonomy, depicted in Figure 1. 
We first make the distinction between 
cases where data (X) is hard to collect, 
and cases where labels (Y) pose the diffi-
culty. For example, collecting a dataset 
of patients with rare diseases is chal-
lenging due to the condition’s rarity. In 
contrast, it is relatively easy to collect a 
large dataset of unlabeled images for 
an image segmentation task, but anno-
tation is slow and costly.

If obtaining data is the main obsta-
cle, we identify three major approaches:

 ˲ Add examples: Generate more ex-
amples from available data (for exam-
ple, through data augmentation).

 ˲ Use additional information on exist-
ing data: Increase the dimensionality of 
X in a manner that can assist the learner 
(for example, curriculum learning).

 ˲ Use models encoding relevant 
knowledge: Instead of learning from 
scratch, take advantage of models 
trained in a different yet relevant setup 
(for example, transfer learning).

If unlabeled data is abundant but la-
bels are difficult to obtain, we identify 
two main approaches:

 ˲ Acquire labels efficiently: Label ex-
amples that should heavily contribute 
to the learning process.

 ˲ Weak labeling: Using proxy labels, 
either making assumptions about la-
bel distribution (for example, semi-su-
pervised learning) or about the labeling 
process (for example, data program-

ming), or using external (noisy) super-
vision signals correlated with the true 
labels (incidental supervision).

We note these approaches may also 
be combined. For example, one might 
add more examples and increase the 
dimensionality of the data. Here, we fol-
low the taxonomy and elaborate on the 
different approaches and best practices.

Obstacle: Missing Data
Quite often, data is hard (or impos-
sible) to obtain. In the following, we 
survey some of the main methods from 
the left branch in Figure 1: obtaining 
more examples efficiently, adding in-
formative dimensions to existing data, 
or taking advantage of related tasks.

Add examples. This category fo-
cuses on methods for obtaining more 
examples.

Dataset repurposing

Use a preexisting dataset for a new 
purpose.

Dataset repurposing is perhaps the 
most obvious method to add data and 
is mentioned here for the sake of com-
pleteness. The idea is to use a preexist-
ing dataset for a different task than it 
was originally constructed for.

For example, ImageNet was original-
ly made and used for classification, but 
later was reused for image generation.45 
Similarly, the MS-COCO image caption-
ing dataset was reused for training visu-
ally grounded word embeddings.20

Data repurposing also includes 
transformations on existing datasets. 
For example, consider inpainting, the 
process of restoring lost parts of an 
image based on the surrounding in-
formation. Inpainting is done using 

Figure 1. Flowchart of the taxonomy for ways to tackle the data bottleneck.
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a recent surge of interest. Recent ad-
vances include methods that jointly 
train a model for generating augmen-
tations,28 and methods that learn 
which augmentations best fit the data.7 
For example, AutoAugment7 randomly 
chooses a sub-policy of batch transfor-
mation and searches for the one that 
yields the highest validation accuracy.

Beyond human-defined transforma-
tions, recent methods suggested using 
pretrained generative adversarial net-
works (GANs) to create new examples. 
Interestingly, the generated data points 
do not have to be interpretable by hu-
mans. For example, Mixup59 trains a 
neural network on convex combina-
tions of pairs of examples and their in-
terpolated labels, treating it as “noisy” 
training data.

More information on existing data. 
Instead of adding new data points, this 
set of methods focuses on adding di-
mensions to existing points. 

Multimodal learning

Integrate associated information on X 
from multiple modalities.

Multimodal learning attempts to enrich 
the input to the learning algorithm, 
giving the learner access to more than 
one modality of X; for example, an im-
age accompanied by its caption. Mul-
timodal learning is intuitive and like 
how infants learn (that is, children see 
new objects is often accompanied by 
additional semantic information). The 
main drawbacks of multimodal learn-
ing are obtaining rich input and effec-
tively integrating it into the model.

Although the term “multimodal learn-
ing” is recent, many works combined 
information from different modali-
ties.11,22,41 These works, and more recent 
ones, show the promise of this method 
as an effective way to reduce data re-
quirements and improve generalization.

Moreover, multimodal learning is 
also often used when the number of data 
points is extremely small, and in partic-
ular, few-, one-, and zero-shot learning 
(when only a few target-specific labeled 
examples exist for the learning process; 
thus, the learner must understand new 
concepts using only a handful of exam-
ples). For example, Visotsky et al.51 used 
multimodal learning for few-shot learn-
ing by integrating additional per-sample 
information—in this case, a list of ob-

jects appearing in the input image (see 
Figure 3). Schwartz et al.37 demonstrated 
that it is possible to outperform previ-
ous state of the art results on the popu-
lar miniImageNet and CUB few-shot 
learning benchmarks by combining im-
ages with multiple and richer semantics 
(category labels, attributes, and natural 
language descriptions).

Curriculum learning

Present examples to the learner 
according to a predetermined order, 
usually based on difficulty.

In curriculum learning, the learner is 

exposed to examples using a predeter-
mined curriculum, where examples are 
usually sorted in increasing order of dif-
ficulty. Meta-data on X is needed to de-
termine its place in the learning process.

The motivation behind curriculum 
learning comes from humans, as teach-
ers tend to start by teaching simpler 
concepts (for example, learning to ride a 
bicycle with training wheels first). Thus, 
curriculum learning attempts to aug-
ment training examples with a difficulty 
score, often corresponding to typicality.

Given the difficulty score, the algo-
rithm starts with a set of simple data 
points and gradually increases the dif-

Figure 2. Examples for common data augmentation manipulations of images as presented 
by Taylor and Nitschke.40 

Figure 4: Typical versus non typical images of dogs are considered to be easy versus hard, 
respectively, in a dogs versus cats classification task.

(a) 
Typical image of dogs, 

easier to classify.

(b) 
Non-typical images of dogs,  

more difficult to classify.

Figure 3. An illustration of the learning setup used by Visotsky et al.51 

Labeled examples are accompanied with rich information that provides 
hints or explains classification. These labels are created during the 
training phase, where annotators write a list of objects, they observe in 
a visual scene using free text. Irrelevant background objects are often 
ignored. During the test phase, only the image is provided.
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reasoning for the cause of death to lim-
it the search space.

ABML is perhaps less popular than 
the other methods in this section. Nev-
ertheless, if expert local knowledge is 
available, ABML is a powerful way to in-
tegrate partial prior knowledge. More-
over, the induced hypothesis should 
make more sense to an expert, as it must 
be consistent with the input arguments.

Models encoding relevant knowl-
edge. Here, we go beyond the classical 
pipeline of training a model for a task; 
we present models that can take advan-
tage of other, related tasks.

Multi-task learning

Co-learn multiple tasks 
simultaneously to enhance cross task 
similarities for better generalization.

Multi-task learning (MTL) is a promi-
nent area of research where one at-
tempts to train on multiple different 
(yet related) tasks simultaneously. 
These multiple tasks are solved con-
currently, exploiting commonalities 
and differences across them.

It has been shown that challenging 
the learner to solve multiple problems at 
the same time results in better general-
ization and better performance on each 
individual task.36 Indeed, MTL is suc-
cessfully used in both vision and NLP. 
The key factors for this success in the 
absence of a large dataset are: It is an im-
plicit data augmentation method, based 
on cross-task commonalities; it enables 
unraveling cross tasks and feature cor-
relations; and encouraging a classifier 
to also perform well on a slightly differ-
ent task is a better regularization than 
uninformed regularizers (for example, 
enforce weights to be small, which is 
the typical L2-regularization).

As an example, consider the case of 
spam-filtering. Quite often, data from an 
individual user is insufficient for train-
ing a model. Intuitively, different people 
have different distributions of features 
that distinguish spam from legitimate 
email. For example, email messages in 
Russian are probably spam for English 
speakers, but not for Russian speakers. 
However, inter-user commonalities can 
be utilized to solve this problem (for 
example, text related to money transfer 
is probably spam). To build upon these 
similarities, Attenberg et al.4 created an 
MTL-based spam-filter, treating each in-

ficulty of training examples throughout 
the learning process. This progression 
enables the model to learn the broad 
concept on a few easy examples and lat-
er refine the concept with more difficult 
ones. Figure 4 shows photos of dogs in 
the top row are more typical and should 
be easier for a classifier to recognize.

Curriculum learning has been 
shown to improve performance while 
decreasing the number of examples 
needed for convergence.17 For exam-
ple, Zaremba and Sutskever58 showed 
how curriculum improves learning for 
the task of predicting the output of Py-
thon code without executing it.

A major caveat of curriculum learn-
ing is the inherent need for a difficul-
ty-label estimator. Human labeling of 
difficulty can be very demanding, per-
haps even more than standard annota-
tion. In practice, the difficulty of each 
example is often learned by a teacher 
model, which may have access to re-
lated training data.17

A related concept is self-paced learn-
ing (SPL).19 Intuitively, the curriculum 
in SPL is determined by the student’s 
abilities, rather than being fixed by 
the teacher. Instead of heuristically 
designing a difficulty measure, SPL in-
troduces a regularizor into the learning 
objective, with the goal of optimizing a 
curriculum for the model itself. This 
makes SPL broadly applicable.

Argumentation-based  
machine learning

Use experts’ local knowledge to 
restrict the search space.

Argumentation-based machine learn-
ing (ABML) is a method to constrain 
the search space using experts’ local 
knowledge.26 In a nutshell, in ABML the 
learner attempts to find if-then rules 
to explain argumented examples in 
a rule induction process. The learner 
starts by finding a rule, adding it to a 
set of rules and removing all training 
data points that are covered by that 
rule. This process is repeated until all 
examples are removed. ABML’s main 
advantage is the use of expert knowl-
edge to justify specific examples, which 
is often easier than explaining global 
phenomena.

For example, Možina et al.26 used 
ABML for medical records of deceased 
patients, where they used a physician’s 

The data-bottleneck 
problem is 
widespread  
across the field of 
machine learning.

96    COMMUNICATIONS OF THE ACM   |   FEBRUARY 2023  |   VOL.  66  |   NO.  2

review articles



cal imaging tasks, including inspecting 
chest x-rays54 and retinal fundus im-
ages.8 The idea is that a network trained 
on a large and diverse dataset of images 
captures universal visual features such 
as curves and edges in its early layers 
(similar to the primary visual cortex of 
humans and many other mammals, a 
Nobel prize winning discoverya). Despite 
the difference between the images in 
ImageNet and those in the downstream 
tasks, these features are relevant for 
many vision tasks. Therefore, this ap-
proach significantly decreases the size 
of labeled task-specific data needed.

In NLP, the commonly used pre-
trained model BERT achieves state-
of-the-art results in various tasks.9 
Pretraining such models is often done 
in a self-supervised manner, where dif-
ferent parts of the input are masked, 
and the learner’s goal is to predict the 
masked parts. For example, given a 
sentence, it is possible to iterate over 
it, masking a different word each time, 
to create various examples.

Fine-tuning in deep networks is usu-
ally done either by adding an untrained 
last layer and training the new model 
on the small task-specific dataset or by 
taking the output embeddings of the 
next to last layer. Another possible fine-
tuning technique is to train the whole 
network with a relatively small learn-
ing rate; that is, perform small chang-
es on the already-decent weights (as a 
heuristic, about 10 times smaller than 
the learning rate used for pretraining). 
Fine-tuning can also be done by freez-
ing the weights of the first few layers of 

a https://www.nobelprize.org/uploads/2018/06/
hubel-lecture.pdf

dividual user as one distinct but related 
classification task and training a model 
across the different users.

A more recent example of MTL 
learning is the T5 model (see Figure 
5).29 This model achieves state-of-the-
art results on many NLP benchmarks 
while being flexible enough to be fine-
tuned to a variety of downstream tasks. 
T5 receives as input the task at hand 
and thus allows the use of the same 
model, loss function, and hyperparam-
eters for any NLP task.

MTL implementations can be di-
vided into two main categories – hard 
versus soft parameter sharing of the 
hidden layers, where hard parameter 
sharing is more commonly used. In the 
hard type, the hidden layers are shared 
between all tasks while keeping sev-
eral task-specific output layers. Baxter5 
showed that hard parameter sharing 
reduces the risk of overfitting to order N 
(the number of tasks), which is smaller 
than the risk of overfitting the task-spe-
cific parameters (the output layers). In 
soft parameter sharing, each task has 
its own model and parameters. The dis-
tance between model’s parameters is 
then regularized to encourage them to 
be similar (enhance cross tasks’ similar-
ity), as done by Duong et al.10

Transfer learning

Transfer knowledge gained while 
solving one problem to a different  
yet related problem.

Transfer learning is a widely used, 
highly effective way to integrate prior 
knowledge, like humans, who never 
approach a new problem tabula rasa, 
but rather with rich experience of 
somewhat similar problems and their 
solutions.42

The idea is to use preexisting models 
trained on related tasks. These pre-
trained models are usually used as an 
initialization for finetuning using a 
small dataset for the task in hand. Thus, 
significantly less task-specific examples 
are needed for convergence.

Another beneficial side effect is the 
use of the model’s initial wide domain 
knowledge, compared to initialization 
with random weights. In other words, 
the model starts the fine-tuning phase 
with some relevant world knowledge.

For example, models trained on Ima-
geNet have been transferred to medi-

the pretrained model. The motivation 
behind this technique is that the first 
layers capture universal features that 
would probably also be relevant to the 
new task. Thus, freezing them during 
fine-tuning should keep the captured 
information that is relevant for both 
the original and the new tasks.

To conclude, transfer learning is 
a powerful tool for both reducing the 
amount of task-specific data needed 
and improving models’ performance.

Meta learning

Improve the learning algorithm by 
generalizing based on experience from 
multiple learning episodes.

Meta-learning (also known as “learning 
to learn”) is a recent subfield of ma-
chine learning,12 focusing on design-
ing models that can learn new tasks 
or adapt to new environments rapidly, 
with only a few training examples. It is 
based on creating a meta-learner that 
has wide prior knowledge regarding 
the relevant topic(s). Meta learning is 
also inspired by human learning. For 
example, people who know how to 
ride a bicycle are more likely to quickly 
learn to ride a motorcycle.

Note that while meta learning can 
often be meaningfully combined with 
MTL systems, their objectives are dif-
ferent. While MTL aims to solve all 
training tasks, meta learning aims 
to use the training tasks for solving 
new tasks with small data. Thus, meta 
learning is about creating models 
with prior experience that can quickly 
adapt to new tasks. Specifically, the 
meta-learner gradually learns meta-
knowledge across tasks, which can be 

Figure 5. Multi-task paradigm as presented by Raffel et al.29 

The objective is to train a model to perform several tasks that are closely re-
lated. The input contains the current task, which allows the use of same model, 
loss function and hyperparameters across various tasks.

“translate English to German: That is good.”

“Das ist gut.”

“not acceptable”

“3.8”

“six people
hospitalized 
after a storm in
attala county.”

“cola sentence: The course is jumping well…”

“stsb sentence1: The rhino grazed on the grass.
sentence3: A rhino is grazing in a field.”

“summarize: state authorities dispatched
emergency crews tuesday to survey
the damage after an onslaught of severe
weather in mississippi…”

T5
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ples that are difficult for the learner 
to classify might be especially useful 
and could decrease the number of 
data points needed for learning.

There are many methods to de-
termine which data points from the 
training set should be queried next. 
Common objectives include picking 
examples which will change the cur-
rent model the most, examples which 
the current model is least certain 
about, or diverse examples that resem-
ble the data distribution. For example, 
Hacohen et al.16 recently showed that 
in the presence of little data it is most 
beneficial to present the model with 
typical examples (compared to scenari-
os with more data, in which it is best to 
use examples that are close to the deci-
sion boundary).

When generating new examples 
(rather than selecting unlabeled ones 
from the training set), it is important 
to remember that humans will be the 
ones labeling them. We wish to point 
out that while data augmentation 
modifies the input but keeps its label 
(as discussed earlier), active learn-
ing generates examples without la-
bels. Thus, the generation algorithm 
should keep the new points interpre-
table, that is, ensure they have a clear 
label.14 For example, Zarecki and Mar-
kovitch57 automatically transformed 
sentences’ sentiment by replacing key 
words that bring them closer to the 
classification boundary (while keep-
ing their syntax).

Recent approaches use GANs to 
generate new examples, either from 
scratch (and label them),60 or by modi-
fying an existing example (while at-
tempting to preserve the label).43 Both 
scenarios update the learner and the 
GAN model simultaneously after label-
ing a new example.

Importantly, the GAN approaches are 
more expressive than transformation-
based approaches, but the result is of-
ten less interpretable. Figure 6 shows an 
example of modified images from Tran 
et al.43 Note that while the MNIST exam-
ples (handwritten digits) have relatively 
clear labels, the CIFAR10 examples (tiny 
images in ten classes such as airplane, 
dog, and ship) are not as easy to label.

A note on gamification. Active learn-
ing is the dominant paradigm for re-
ducing the number of annotations 
needed. However, a different approach 

generalized to a new task using little 
task-specific information.

There are three common approach-
es to meta-learning: metric-based (sim-
ilar to nearest-neighbor algorithms), 
optimization-based (meta-gradients 
optimizing), and model-based (no as-
sumptions about data distribution).

As an example of a metric-based 
approach, Vinyals et al.50 proposed a 
framework that explicitly learns from 
a given support set to minimize a loss 
over a batch. The result is a model that 
learns to map a small, labeled support 
set and an unlabeled example to its la-
bel, obviating the need for fine-tuning 
to adapt to new class types. They then 
showed the superiority of this method 
in both vision and NLP tasks.

A well-known work in the optimiza-
tion-based line of research is model-
agnostic meta-learning (MAML), which 
is a general optimization algorithm, 
compatible with any gradient descent-
based model.12 It uses a meta-loss 
specifically designed to induce quick 
changes when fine-tuned on new tasks 
and is based on N-gradients (where N is 
the total number of tasks).

In the model-based line of research, 
Munkhdalai and Yu27 presented Meta-
Net, a meta-learning model designed 
specifically for rapid generalization 
across tasks. The rapid generalization 
of MetaNet relies on “fast weights”, 
which are parameters of the network 
with a smaller timescale for changes 
than the regular gradient-based weight 
changes. This Hebbian short-term 
plasticity maintains a dynamically 
changing short-term memory of the 

recent history of the units’ activities in 
the network, as opposed to the stan-
dard slow recurrent connectivity. This 
model outperforms various other re-
current models across several tasks.

Obstacle: Missing Labels
We now turn our attention to the sec-
ond major branch in Figure 1, where 
unlabeled data is abundant, but there 
are few labels (or no labels at all). This 
setting is common in practice because 
unlabeled data is often much easier to 
obtain than labeled data. In this sec-
tion we cover two main approaches. 
The first deals with ways to acquire 
labels efficiently, and the other uses 
weak labels.

Active learning

Generate examples which  
are close to the decision boundary.  
These examples should contribute  
to the learning process more  
than random examples.

Acquiring labels efficiently. When 
more labels are needed but annota-
tion is costly, an immediate question 
would be how to acquire new labeled 
data efficiently. The prime example of 
this is active learning, in which the 
learner can iteratively query an oracle 
(information source) to label new data 
points.32 These queries can include 
unlabeled examples either from the 
dataset or new ex-nihilo data points, 
often ones that are close to the deci-
sion boundary. The rationale is that 
not all examples contribute equally 
to the learning process: diverse exam-

Figure 6. Images generated by the GAN transformation approach for “near-miss” examples.43 

Images generated based on the MNIST dataset are interpretable to humans, 
while this is not the case for the CIFAR10 examples.

(a) MNIST (b) CIFAR 10
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to label efficiently is to reduce the cost 
of annotations. A notable example is 
gamification—applying gaming me-
chanics to non-gaming environments, 
to make tasks more enjoyable and give 
annotators a non-monetary incentive to 
provide labels. The challenge in gamifi-
cation is often to design the game to cre-
ate the right incentive. This is far from 
trivial, and requires knowledge of game 
design, motivational psychology, and 
an understanding of the target group.25 
Ignorance of the complexity involved 
in gamification often results in modest 
outcomes.

The seminal work of Von Ahn and 
Dabbish52 demonstrated a two-player 
game for image labeling, where the play-
ers gain points for describing an image 
using the exact same term. The research-
ers famously estimated that if users 
were to play the game at the same rate 
as other popular online games, most 
images on the Web could be labeled (for 
free) within only a few months. Another 
example is the unfun.me corpus used in 
humor research. This corpus was con-
structed via an online game where play-
ers change satirical headlines into seri-
ous ones with minimal edits.55

Weak labeling. If we cannot obtain 
labels efficiently, we could choose to 
obtain noisy labels as a proxy. In vision, 
this is sometimes referred to as “au-
tomatic image annotation.” We cover 
two main types of noisy labels here.

Assumptions on P (Y = y|X = x).

Semi-supervised learning

Harness information regarding  
P (X = x) to reduce labeling 
requirements by integrating labeled 
and non-labeled examples in  
the learning process.

Semi-supervised learning (SSL) is a very 
large and active area of research, and 
we do not profess to cover all it; for a re-
cent survey on SSL, we refer the reader 
to van Engelen and Hoos.46

SSL estimates the distribution P (X = x) 
using a large amount of unlabeled, to re-
duce the annotated data requirements. 
It makes strong assumptions about the 
relation between P (X = x) and P (Y = y|X = 
x) to reduce the number of labeled exam-
ples needed.56 Typically, these assump-
tions take the following forms:

 • Smoothness: Points that are close 
to each other are more likely to share a 

label. More formally, every two adjacent 
samples x, x¢ should have similar labels.

 • Cluster-ability: Data tend to form 
discrete clusters where points belong-
ing to the same cluster are more likely 
to share a label. Thus, the decision 
boundary can only pass through low-
density areas in the feature space.

 • Manifold: Data lies approximately 
on a manifold of a much lower di-
mension than the input space. Thus, 
when considering low-dimensional 
manifolds of the input space, any data 
points on the same manifold should 
have the same label.

All three assumptions can be seen 
as different definitions of interpoints 
similarity: The smoothness defines 
it as proximity in the input space, the 
cluster-ability assumes high-density 
areas contain similar data points, and 
the manifold states that points which 
lie on the same low-dimensional mani-
fold are similar.

Another important distinction in 
SSL is between inductive and transduc-
tive methods. The former yields a clas-
sification model to predict the label of 
a new example, like supervised learning 
(f: X ® Y). The latter do not yield such a 
model, but instead directly provide pre-
dictions. Transductive approaches are 
usually graph-based, while the inductive 
approaches can be further divided into 
unsupervised preprocessing, intrinsically 
semi-supervised, and wrapper methods.46

One popular way of using the un-
supervised preprocessing approach 
is to use the knowledge on P (X = x) 
to extract useful features in a lower 
dimension than the original dimen-
sion of X and thus reduce the learning 
complexity. This includes learning a 
representation using an auto-encoder 
model49 or applying a dimensionality 
reduction method like PCA.1

Under the inductive approach, it 
is also possible to use an intrinsically 
semi-supervised model like semi-super-
vised SVM, which changes the optimiza-
tion target to find a decision boundary 
with maximal margin from both labeled 
and unlabeled points (for example, us-
ing SVM).47 This can also be applied to 
neural networks by adding a form of 
regularization over the unlabeled data.30

In wrapper methods, a model is ini-
tially trained from the available set of 
examples.44 It then makes predictions 
on the unlabeled dataset. The model’s 

When generating 
new examples 
(rather than 
selecting unlabeled 
ones from  
the training set),  
it is important  
to remember  
that humans  
will be the ones 
labeling them.
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between klow and khigh”, or “emails con-
taining a link have at least k% more 
spam than emails without links”).18 
Ballpark learning learns a model that 
labels individual instances while satis-
fying these soft, noisy constraints.

Noisy Supervision from External 
Datasets. It is sometimes possible to 
take advantage of preexisting datasets 
to get a noisy supervision signal.

Distant supervision

Use a preexisting database to collect 
examples for the desired relation. 
These examples are then used to 
automatically generate labeled 
training data.

Distant supervision is a popular method 
to use existing datasets. In distant su-
pervision, a model is learned given a 
labeled training set, as in “standard” 
supervised ML, but the training data 
is weakly labeled (that is, labeled auto-
matically, based on heuristics or rules).

For example, Mintz et al.24 used Free-
base, a large, unlabeled, semantic da-
tabase, to provide distant supervision 
for relation extraction. The intuition is 
that any sentence that contains a pair of 
entities with a known Freebase relation 
is likely to express that relation in some 
way.23 For example, each pair of “Barack 
Obama” and “Michelle Obama” that 
appear in the same sentence can be 
extracted as a positive example for the 
marriage relation. Due to the poten-

pseudo-labels are added as labeled 
data for the next iteration of supervised 
learning. This process is repeated until 
convergence.

Data programming

Integrate multiple weak heuristics 
regarding the labeling process  
f : X → Y to create noisy labels.

Data programming is a paradigm for the 
programmatic creation of training sets. 
In data programming, users express 
weak supervision strategies or domain 
heuristics as labeling functions (LFs), 
which are programs that label subsets of 
the data. Importantly, LFs are imprecise 
and can contradict each other, resulting 
in noisy labels. By explicitly representing 
the labeling process f: X ® Y as a genera-
tive model, data programming aims to 
“denoise” the generated training set.

For example, in spam-detection, po-
tential LFs would return “spam” if the 
email contains a URL or a money trans-
fer request, and “no-spam” if coming 
from someone in your contact list. 
These functions alone achieve poor 
performance; however, like ensemble 
methods (where a group of weak learn-
ers comes together to form a strong one 
with superior accuracy), the strength of 
data programming is in the combina-
tion of many weak heuristics.

A popular system for data program-
ming is Snorkel.31 It applies the (noisy) 
LFs to the data and estimates their ac-

curacy and correlations, using only their 
agreements and disagreements. This in-
formation is then used to reweight and 
combine LF predictions to output prob-
abilistic noise-aware training labels. 
This process is presented in Figure 7.

Expectation regularization

Using prior knowledge regarding  
the proportion of the different labels 
in sub-groups of the data to create 
noisy labels.

Prior knowledge regarding labels’ pro-
portion in various subgroups of the 
data, makes it possible to automatical-
ly create noisy labels in a process called 
expectation regularization (learn from 
label proportions).53

This estimation process relies on 
uniform convergence properties of the 
expectation operator. It uses empirical 
means of the sub-groups to approxi-
mate expectations with respect to a 
group’s distribution. The latter is then 
used to compute expectations with re-
spect to a given label, and finally, the 
conditional means on the label distri-
bution are used to estimate the condi-
tional group means.

A recent work in this area is ballpark 
learning, which relaxes the assumption 
of known label proportions, assuming 
instead soft constraints on proportions 
within and between groups of instances 
(for example, “the percentage of spam 
in emails mentioning a certain word is 

Figure 7. Illustration of Snorkel’s pipeline.

The domain expert creates noisy labeling functions (LFs). A generative model  
learns to resolve and model the output of these LFs. The model’s output  
is the input to a discriminative model. Image reproduced from  
https://towardsdatascience.com/snorkel-a-weak-supervision-system-a8943c9b639f

def lf1(x):
 cid = (x.chemical_id,
x.disease_id)
 return 1 if cid in KB else 0

def lf2(x):
 m = re.search(r'.*cause.*'.
x.between)
 return 1 if m else 0

def lf3(x):
 m = re.search(r'.*not
cause.*'. x.between)
 return 1 if m else 0
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tially large number of sentences that 
contain a given entity pair, it is possible 
to extract and combine noisy features 
for the labeling process. Based on these 
semantic signals, Mintz et al.24 was able 
to use 116 million unlabeled instances.

Incidental supervision

Exploit weak signals that exist  
in data independently of the task  
at hand.

The incidental supervision framework is 
based on the idea that informative cues 
for a task could exist in datasets that 
were not constructed with this task in 
mind. For example, suppose we want 
to infer gender from first names. One 
could use Wikipedia, which was not cre-
ated for this task. The incidental signal 
would be pronouns and other gender in-
dicators appearing in the first paragraph 
of Wikipedia pages about people with 
that first name. This signal is correlated 
to the task at hand and (together with 
other signals and inferences), could be 
used for supervision, reducing the need 
for annotations.

Incidental supervision does not as-
sume knowledge about the labeling 
process.34 Moreover, incidental signals 
can be noisy, partial, or only weakly cor-
related with the target task, and still be 
used to provide supervision and facili-
tate learning. Note that the notion of 
supervision here is different from that 
of distant supervision: In distant super-
vision, the model learns in the standard 
supervised learning way, but the training 
set is labeled automatically, based on 
heuristics. In incidental supervision, a 
complete training set might never exist.

Context-sensitive spelling and gram-
mar checking is a task that has been 
relying on incidental supervision for 
over 20 years now.13 Under the assump-
tion that most edited textual resources 
(books, newspapers, Wikipedia) do not 
contain many spelling and grammar er-
rors, these methods generate contextual 
representations for words, punctuation 
marks and phenomena such as agree-
ments. These representations are then 
used to identify mistakes and correct 
them in a context-sensitive manner.35

An unintentional example for the 
power of incidental signals comes 
from image processing, where the task 
of gender detection based on the iris 
texture was solved with great accuracy 

(over 80% for most papers and an im-
pressive score of 99.5% reported by Al-
rashed and Berbar2). However, it was 
later discovered that most models did 
not detect a person’s gender; rather, 
they detected the use of cosmetic mas-
cara, which is a much easier task and 
is indeed correlated with the original 
assignment.21 Thus, although uninten-
tionally, this finding emphasized the 
potential of using incidental cues.

Conclusion
The dominant paradigm in ML today is 
creating large, task-specific datasets (of-
ten using crowdsourcing). In this review 
we devise a taxonomy for alternative 
ways to tackle the data bottleneck prob-
lem. The taxonomy aims to bring order 
to the various methods suggested across 
different subfields, as well as making it 
easier to identify underlying assump-
tions and potential new directions. 
Identifying assumptions is essential for 
breaking them—and breaking assump-
tions is an established technique for en-
couraging creativity and innovation.

For example, surveying the taxono-
my, several common assumptions that 
stand out are that samples tend to be 
representative of the data, that we have 
information about X and Y conjointly, 
and that each example has exactly one 
correct label. This raises the prospect 
of new learning settings (for example, 
what if we only have knowledge about 
the distributions of data points P (X = 
x) and labels P (Y = y), separately?), and 
of new ways to aggregate multiple (cor-
rect but different) labels.

We note that our taxonomy covers 
widely diverse techniques, making very 
different assumptions. Ultimately, we 
expect that choosing a technique will 
often boil down to what the practitioner 
has access to (that is, which assump-
tions are met). For example, in multi-
task learning the practitioner not only 
possess labeled data for their task, but 
also for several related tasks; in data 
programming, they have no (or very few) 
labels for their task but possess some 
partial knowledge about the labeling 
process; in curriculum learning, they 
know something about the hardness of 
data points; and so on.

We further wish to point out that it 
is not always obvious whether a meth-
od’s assumptions are met in practice, 
or to estimate which method is better 

Identifying 
assumptions  
is essential  
for breaking them—
and breaking 
assumptions  
is an established 
technique for 
encouraging 
creativity  
and innovation.
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suited for a specific use 
case. The answer might 
depend on many factors, 
such as the inherent dif-
ficulty of the concept one 
wishes to learn, biases in 
the data, or the manual 

effort needed to obtain high-quality 
input for the different methods. For ex-
ample, in methods using weak labeling, 
the tradeoff between implementation 
speed and accuracy for different weak 
labels is often not clear in advance.

In addition to the inherent diffi-
culty of collecting large datasets, we 
note there are growing concerns about 
such datasets, including environmen-
tal costs, financial costs, opportunity 
costs, and more.38 We also note that 
large datasets are still prone to fitting 
artifacts, and that several recent meth-
ods have attempted to address the re-
curring challenges of the annotation 
artifacts and human biases found in 
many existing datasets.15

In conclusion, ML has made tremen-
dous progress using large datasets, but 
they are not a panacea for all problems. 
Our hope is that this paper will encour-
age re-thinking about current annota-
tion-heavy approaches.
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