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ABSTRACT
Objective: To determine whether data-driven family histories (DDFH) derived from linked EHRs of patients and their parents can improve predic-
tion of patients’ 10-year risk of diabetes and atherosclerotic cardiovascular disease (ASCVD).

Materials and Methods: A retrospective cohort study using data from Israel’s largest healthcare organization. A random sample of 200 000 sub-
jects aged 40–60 years on the index date (January 1, 2010) was included. Subjects with insufficient history (<1 year) or insufficient follow-up
(<10 years) were excluded. Two separate XGBoost models were developed—1 for diabetes and 1 for ASCVD—to predict the 10-year risk for
each outcome based on data available prior to the index date of January 1, 2010.

Results: Overall, the study included 110 734 subject-father-mother triplets. There were 22 153 cases of diabetes (20%) and 11 715 cases of
ASCVD (10.6%). The addition of parental information significantly improved prediction of diabetes risk (P< .001), but not ASCVD risk. For both
outcomes, maternal medical history was more predictive than paternal medical history. A binary variable summarizing parental disease state
delivered similar predictive results to the full parental EHR.

Discussion: The increasing availability of EHRs for multiple family generations makes DDFH possible and can assist in delivering more personal-
ized and precise medicine to patients. Consent frameworks must be established to enable sharing of information across generations, and the
results suggest that sharing the full records may not be necessary.

Conclusion: DDFH can address limitations of patient self-reported family history, and it improves clinical predictions for some conditions, but
not for all, and particularly among younger adults.
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INTRODUCTION

Family medical history, often abbreviated as Family History
(FH), is an essential predictor of disease risk,1,2 encapsulating
information on a patient’s genetic susceptibility to disease,
and often also on a patient’s social and physical environment,
as well as health-related behaviors.3 Positive FH (ie, a record
of a disease having occurred in a family) is a well-established
risk factor for both rare and common conditions that, in
aggregate, account for the majority of healthcare costs, mor-
bidity, and mortality in developed countries.4–8 A positive FH
can also increase a patient’s perceived risk for disease, a crit-
ical factor for changing health behaviors.9 Indeed, studies
have shown that knowledge of FH has led to more frequent
health screenings.10

Despite its importance, FH is not widely available in
today’s clinical settings.11,12 Data from the Electronic Medi-
cal Records and Genomics (eMERGE) Network13 showed
that only 2 of 5 major healthcare systems captured any FH
information whatsoever in their electronic medical records,
and that over 70% of the records were incomplete or missing
in the centers that did collect this information.14 FH is diffi-
cult to collect from patients due to the time limitations of the
clinical encounter1,4 and the patient’s inherently incomplete
knowledge of their own FH1,4,15: Patients often do not have
complete or reliable knowledge about their immediate (first
degree) family members’ health history, and typically know
even less about more distant relatives.16 Studies have also
shown that patient-reported family histories are typically
recorded only after the patient has already been diagnosed
with a particular condition, diminishing their value for
advanced disease risk prediction.17 The accuracy of patient-
reported FH has also been found to depend on the patient’s
own health status.18

Recent efforts focused on streamlining the process of col-
lecting family histories from patients, including the Surgeon
General’s My Family Health Portrait19 and many
others,4,20,21 have made important progress, but continue to
face significant challenges.20,22 These systems remain limited
by time constraints and patients’ incomplete knowledge of
their own FH.1,23 Many of them also face difficulties transfer-
ring the information they collect to the EHR.20

Even when FH is available, many health professionals do
not incorporate this information into their clinical deci-
sions.1,2,4,12,23 This is partly due to the fact that it is difficult
for physicians to interpret complex family histories and calcu-
late clinical risks during the short clinical encounter.1 Compu-
terized risk assessment of family histories can help overcome
these challenges by integrating many types of data when per-
forming risk calculations.24 The supplementary FH informa-
tion might enable physicians to identify high-risk patients,
undetected by patient-specific factors. This could facilitate
more personalized doctor-patient discussions and enhance
patient motivation for health behavior changes.9,10 Therefore,
FH presents a largely untapped opportunity for health infor-
mation technology innovation and intervention.4

To address these challenges and to overcome the inherent
limitations of patient-reported FH, we sought to examine a
data-driven approach for capturing FH. We analyzed EHR
data from a large healthcare system database containing

linked family groups of parents and offspring.25 We focused
on predicting risks of developing atherosclerotic cardiovascu-
lar disease (ASCVD) and diabetes (type 2 diabetes mellitus), 2
leading causes of morbidity and mortality for which early
screening and lifestyle modifications have the potential to
improve prognosis and even prevent the development of dis-
ease altogether.26 We compared the performance of models
that predict new-onset ASCVD and diabetes based only on
the subject’s EHR versus models that also take into account
data from the EHRs of the subject’s parents. To help guide
potential future interventions, we sought to identify specific
groups for whom FH might be particularly beneficial or less
useful, examining whether the predictive value of FH varied
by the age or sex of the subject, or age or sex of the parent.
We also compared the specific features in the father’s and
mother’s health records which had the highest predictive
value.

MATERIALS AND METHODS

Clalit Health Services (CHS) is the largest of 4 payer-provider
health care delivery systems in Israel, with CHS serving over
4.7 million members—over half of the Israeli population. The
CHS database includes more than 2 million nuclear family
groups in which both parents and their offspring are members
of CHS. Annual membership attrition is below 2% so there is
minimal loss to longitudinal follow up.27 CHS members are
registered using their national identification number which is
also linked to their birth records through the Ministry of
Health and residential information through the Ministry of
Interior. The birth records provide a link between the patient
and his/her parents’ national identification numbers, thus ena-
bling a link between the patient’s and parents’ CHS medical
records. As such, the CHS data warehouse stores comprehen-
sive and validated clinical and demographic information on
its entire patient population.

The data were deidentified prior to analysis, removing iden-
tifiable information and randomly offsetting the dates. We
extracted a randomly selected sample of 200 722 subjects
from the CHS data warehouse according to the following
inclusion criteria: (1) subject was aged 40–60 years on the
index date of January 1, 2010, and (2) both of the subject’s
parents were members of CHS for at least 1 year from 2003
onward. The age group of 40–60 years was selected since it
had a significant concentration of both ASCVD and diabetes
incidence according to a previous study conducted using the
same dataset.25 Subjects who met the case-definition prior to
the index date, who were covered by the health system for less
than 1 year prior to the index date, or who had insufficient
follow-up time to ascertain the case definition (<10 years
follow-up) were excluded. Within the selected sample of
200 722, if 2 or more siblings from the same family were
found in the sample, only the oldest of these siblings was
included as subject in the study. For each subject-mother-
father triplet, we extracted the complete medical record,
including demographics, diagnoses, laboratory tests, medica-
tions, procedures, and hospitalizations for all 3 persons in the
triplet. Of the laboratory tests, 2 tests were converted into cat-
egorical variables: glucose (<5.56, 5.56–6.94, 6.95–11.11,

1916 Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 12

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/30/12/1915/7236560 by H
ebrew

 U
niversity of Jerusalem

 user on 04 January 2024



and >11.11 mmol/L or <100, 100–125, 126–200, and
>200 mg/dL) and hemoglobin A1C (<39, 39–47, and
�48 mmol/mol or <5.7%, 5.7%–6.4%, and �6.5%). Miss-
ing variables were recorded as “not available” and included
in the analysis.

Ethics

The study was approved by the CHS Institutional Review
Board. Reporting followed the Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) checklist.28

Outcomes and case definitions

We examined 2 outcomes for the study subjects: New onset
diabetes within 10 years of the index date, and new onset
ASCVD within 10 years of the index date.

ASCVD case definition
An ASCVD event was defined as either acute myocardial
infarction, stroke, or fatal coronary artery disease (CAD) in a
patient without any history of cardiovascular disease (CVD).
A fatal CAD was defined as death within 1 year of the CAD
diagnosis, as recorded in the patient’s EHR. Following the
design of Ward et al,29 a broader case definition than ASCVD
was used for the exclusion of patients with pre-existing CVD
and for the definition of positive FH of CVD. This case defini-
tion encompassed both ASCVD and any of the following:
diagnosis of atrial fibrillation, heart failure, or other CVD
(Supplementary Appendix S1).

Diabetes case definition
Diabetes was defined as a diagnosis of diabetes accompanied
by laboratory evidence for diabetes. Patients who met only
one of these criteria (only diagnosis or only labs) were
excluded from the study. The same case definition was used
both for subjects and for their parents (to define positive FH
of diabetes). The laboratory criteria were based on the Ameri-
can Diabetes Association’s recommendations,30 requiring at
least one of the following 3 conditions:

1) Hemoglobin A1C levels of 48 mmol/mol (6.5%) and over.
2) Fasting glucose levels of over 125 mg/dL (information on

fasting was not readily available, thus we only included tests
taken before 9 AM).

3) Glucose levels of over 11.11 mmol/L (200 mg/dL) 2 h after
an Oral Glucose Tolerance Test (OGTT) of 75 g glucose.

Lab results were obtained both from inpatient and outpa-
tient encounters and a single abnormal lab result was suffi-
cient to meet the laboratory criteria.

Diagnostic codes used for ASCVD and diabetes case
definitions
Diagnostic criteria for both ASCVD and diabetes were based
on ICD-9 codes validated in prior studies,29,31,32 and on free-
text search within uncoded diagnoses (eg, a search for the
term “atherosclerosis” within the textual description of the
diagnoses). ICD-10 codes were not in use at CHS during the
study period and were thus not included in the case definition.
Free-text search was only conducted within the diagnosis field
and not within other fields such as the clinician’s notes. A
detailed description of the specific codes and search terms
used is presented in Supplementary Appendix S1.

Preliminary analysis

A preliminary analysis of all demographic and clinical fea-
tures was performed, both for the entire cohort as well as for
the 2 subcohorts of ASCVD and diabetes case-subjects.
Comparisons between cohorts were conducted using the
Mann-Whitney-Wilcoxon test for continuous variables and
chi-square for categorical variables. Risk ratios (RRs) were
calculated to compare binary variables. To study the relation
between FH and offspring’s disease, adjusted risk ratios
(ARRs) were calculated using a Poisson regression. These
ARRs were adjusted by the following patient related con-
founders: other parent FH, age, sex, marital status, area of
residence (periphery rank, urban/rural, geographic adminis-
trative code), body mass index (BMI), and presence of hyper-
tension (yes/no). These potential confounders (and all other
available variables in our data) were also addressed in the
main analysis of this study—the multivariate predictive model
below.

Predictive modeling

Two separate models were developed—1 for ASCVD and 1
for diabetes—to predict the 10-year risk for each outcome
based on data available prior to the index date of January 1,
2010. The models were developed using XGBoost, an open-
source implementation of the gradient boosted trees algo-
rithm. Gradient boosting is a supervised learning algorithm
that predicts a target variable by combining the estimates of a
set of simpler models (or trees). XGBoost has been shown to
provide superior performance compared to other models in
similar studies.33–35 Moreover, it is computationally efficient,
and thus well suited for the current prediction task which
incorporates the medical records of 3 subjects for each predic-
tion. For each outcome, the cohort was randomly divided into
2 subsets—an 80% training set and a 20% testing set. Hyper-
parameter tuning was performed on the training set using 20
iterations of a random-search within a predefined parameter
space and with 5-fold cross-validation (within the training
set). Using these hyperparameters, separate analyses were per-
formed for subjects who were 40–44, 45–49, 50–54, 55–
60 years old on the index date. For each age group, a separate
model was derived from the training set and validated on the
testing set. A more detailed description of XGBoost and the
modeling process can be found in the Supplementary Material
(Supplementary Appendix S2). The Supplementary Material
also includes a literature review of known confounders for
these prediction tasks, alongside a summary of which of these
confounders was available in our data.

For each condition (ASCVD and diabetes) and for each age
group, we compared 6 different models: (1) a prediction based
solely on the subject’s own EHR data; (2–4) predictions based
only on the father’s, mother’s or both parents’ EHR data,
respectively; (5) a prediction based on the subject’s data along
with 2 binary variables indicating whether the father or
mother met the case definition, and (6) a prediction based on
the subject’s data and both parents’ full EHR data.

For each model, using the predictions generated for the test-
ing set, we calculated the following performance metrics: Posi-
tive predictive value (PPV), negative predictive value (NPV),
sensitivity, specificity, and area under the receiver operating
characteristic curve (AUC). Using the pROC package in R,36

95% confidence intervals for AUC values were calculated
using DeLong’s method, and P values were derived for
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comparing AUCs of different models. For the other perform-
ance metrics (eg, sensitivity, PPV, etc.), bootstrap resampling
with 1000 repetitions was used.37 For each age group, and
for each outcome, we compared the performance of the differ-
ent model variations.

RESULTS

The records of 200 722 subjects were extracted from the CHS
electronic medical records. Of these, 89 988 (45%) nonoldest
siblings were excluded to keep only the oldest sibling in each
family that was selected in the sample. Thus, a total of
110 734 subjects were included (Figure 1). The included
cohort of subjects was composed of 54 161 (49%) men and
56 573 (51%) women, with a median age of 48.1 years on
the index date (IQR 43.7–52.6, Table 1). The median dura-
tion of longitudinal EHR coverage available for each subject
(from first to last documentation in the EHR) was 22.6 years
(IQR 21.6–34.8). Overall, 3 104 109 person years were avail-
able for the subjects. The EHRs for the parents of each subject
were also extracted. The median age of the parents was
75 years on the index date (IQR 70–80). Parent data coverage
included a median of 22.7 years per parent, adding to a total
of 9 717 976 person years for the entire study population.

Diabetes—preliminary analysis

The subjects included 22 153 cases of diabetes (20%).
Median age at diagnosis, as recorded in the EHR, was 50.3
(IQR 45.7–54.0). 62.3% of diabetic subjects were male (vs
48.9% males in overall study population, Table 1). The num-
ber of subjects eligible for inclusion in the study, and the num-
ber of positive cases, both varied between the different age
groups (Supplementary Appendix S3): As age increased, the
number of eligible subjects decreased, and the percent of posi-
tive cases increased. Among individuals who were 40–45 years
old on the index date, 27 962 subjects were eligible for predic-
tion, of which 2702 (9.7%) were diagnosed with diabetes
during the 10-year follow-up. Within the 45–50, 50–55, and
55–60 years age groups, there were 3138 (13.4%), 3542
(16.5%), and 1629 (18%) subjects, respectively, who met the
diabetes case definition during the follow-up period (Supple-
mentary Table S1 in Supplementary Appendix S3). Of those
who developed diabetes, the median time from prediction to
the index-event was between 4.2 and 5.7 years, depending on
the age group.

The ARR for diabetes in our cohort was 1.51 (95% CI
1.29–1.78) if the father had diabetes and 1.75 (95% CI 1.49–
2.06) if the mother had diabetes (Table 2). A parental history
of disease was more predictive of a subject’s risk when
subjects or their parents were diagnosed at a younger age.

Figure 1. Study flow chart. For each outcome, only patients that did not meet the case-definition prior to the prediction date (January 1, 2010) and with

>10-year follow-up were eligible for prediction.
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For example, the RR that a subject would develop diabetes
before the age of 40 years varied between 5.84 (95% CI
5.19–6.56), 2.52 (95% CI 2.12–2.99, P< .001), and 1.90
(95% CI 1.45–2.50, P¼ .08), depending on whether both
parents were diagnosed with diabetes before the age of
60 years, at the age of 61–70 years, or at the age of 71–
80 years, respectively. Similarly, a history of both parents
having diabetes before the age of 60 years was associated
with a RR of 5.84 (95% CI 5.19–6.56), 2.85 (95% CI 2.62–
3.10, P< .001), and 1.05 (95% CI 0.92–1.21, P< .001) that
the subject would develop diabetes before the age of 40 years,
at the age of 41–50 years, or 51–60 years, respectively (Sup-
plementary Table S2 in Supplementary Appendix S3). This
analysis also included subjects excluded from the prediction
model who had met the case definition prior to the index date
of January 1, 2010.

A difference was also noted between the RR of paternal
and maternal history of disease depending on the sex of the
subject. In the same example above (parent diagnosed before
60, subject diagnosed before 40), a history of a father with
diabetes was associated with a RR of 3.41 (95% CI 3.05–
3.82) that his son would develop diabetes, versus 3.06 (95%
CI 2. 67–3.52) for his daughter (P¼ .2). Likewise, a history of

a mother with diabetes was associated with a RR of 4.21
(95% CI 3.73–4.75) that her daughter would develop diabe-
tes, versus 3.26 (95% CI 2.94–3.63) for her son (P¼ .002,
Supplementary Table S2 in Supplementary Appendix S3). As
can be seen, these differences were only significant for mater-
nal history and should also be interpreted with caution as we
found a significant interaction between paternal and maternal
histories of disease (ANOVA, P< .001).

Diabetes—predictive modeling

For the 3 age groups of 40–55 years, using only the subject’s
own information, the model achieved an AUC of 0.77–0.78
for the prediction of new onset of diabetes within 10 years.
The addition of parent information significantly improved the
model’s performance (P< .005), leading to an AUC of 0.79–
0.80. The sensitivity increased by 5% for the 40–45 years age
group and by only 1% for the 55–60 years age group. Con-
sidering 10% and 18% prevalence rates in these age groups,
respectively, the number needed to screen (ie, number of
patients needed to have FH incorporated into their EHR to
identify one otherwise undetected case) would be 200 for the
40–45 years age group and 550 for the 55–60 years age
group. Further details are found in Table 3 and Figure 2. The

Table 2. Risk ratio with 95% confidence intervals for a subject meeting the case definition if one, either, or both parents met the case definition

Diabetes RR ASCVD RR

Met case definition All subjects Male subjects Female subjects All subjects Male subjects Female subjects
(n¼110 734) (n¼54 161) (n¼56 573) (n¼110 734) (n¼54 161) (n¼56 573)

Father 1.65a 1.64 1.67 1.48a 1.45 1.60
[1.61–1.69] [1.59–1.69] [1.61–1.73] [1.42–1.55] [1.37–1.52] [1.46–1.75]

Mother 1.97a 1.84 2.17 1.57a 1.55 1.62
[1.92–2.02] [1.78–1.9] [2.09–2.26] [1.51–1.63] [1.49–1.62] [1.5–1.74]

Father or mother 2.22 2.11 2.38 1.92 1.87 2.1
[2.15–2.3] [2.03–2.21] [2.26–2.51] [1.79–2.07] [1.73–2.03] [1.82–2.43]

Father and mother 2.06 1.96 2.20 1.60 1.57 1.69
[2.01–2.11] [1.9–2.01] [2.12–2.28] [1.55–1.66] [1.51–1.64] [1.58–1.8]

The RRs were also adjusted for the following patient related confounders: other parent FH, age, sex, marital status, area of living (periphery rank, urban/
rural, geographic administrative code), body mass index (BMI), and presence of hypertension (yes/no).

a The ARRs for diabetes were 1.51 [1.29–1.78] for paternal FH and 1.75 [1.49–2.06] for maternal FH, the ARRs for ASCVD were 1.50 [1.11–2.02] for
paternal FH and 1.14 [0.9–1.43] for maternal FH.

Table 1. Demographics of all study cohort, ASCVD cases, and diabetes cases

All Patients ASCVD Diabetes
110 734 (100%) 11 715 (10.6%) 22 153 (20%)

Age (years) 48.1 [43.7–52.6] 51.0 [46.5–54.5] 50.3 [45.7–54]
Ethnicity

Ashkenazi Jew 21 541 (19.5%) 2437 (20.8%) 4489 (18.2%)
Araba 15 058 (13.6%) 1948 (16.6%) 4611 (18.7%)
Sephardi Jew 40 933 (37.0%) 4607 (39.3%) 7865 (32.0%)
Unknown/other 33 202 (30.0%) 2723 (23.2%) 5188 (23.4%)

Sex (% female) 56 573 (51.1%) 3258 (27.8%) 9274 (37.7%)
Marital status (married) 72 895 (65.8%) 7686 (65.6%) 14 807 (60.2%)
Number of children 3 [3–3] 3 [2–4] 3 [2–4]
Periphery rank 7 [6–9] 7 [5–9] 7 [5–9]
Urban dwelling 91 255 (82.4%) 9267 (79.1%) 18 366 (74.6%)
Age at diagnosis 52.8 [47.4–58.3] 50.4 [44.8–55.4]
Deceasedb 3469 (3.1%) 1062 (9.1%) 1288 (5.8%)

a The “Arab” ethnicity-category describes all Israeli patients of Arab descent; no information was available to discern between the different subpopulations
within this category.

b Record of mortality anytime within the extracted medical history. Continuous numbers are shown as median and IQR.
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Table 3. Comparison of model performance (AUC), with and without parent information

Patient age Patient data only Patientþparents data (case definition only) Patientþparents data (full EHR)

AUC [95% CI] AUC [95% CI] P value AUC [95% CI] P value

Diabetes
40 0.77 [0.75–0.79] 0.79 [0.77–0.81] .002a 0.79 [0.77–0.81] .02a

45 0.78 [0.76–0.8] 0.80 [0.78–0.82] <.001 0.80 [0.78–0.82] <.001
50 0.77 [0.76–0.79] 0.79 [0.77–0.81] <.001 0.79 [0.77–0.81] <.001
55 0.79 [0.76–0.81] 0.79 [0.77–0.82] .299 0.79 [0.77–0.82] .518
All 0.79 [0.77–0.79] 0.80 [0.79–0.81] <.001 0.80 [0.79–0.81] <.001

CVD
40 0.74 [0.71–0.77] 0.74 [0.71–0.78] .227 0.74 [0.71–0.77] .986
45 0.73 [0.71–0.76] 0.74 [0.71–0.77] .049 0.74 [0.72–0.77] .017
50 0.73 [0.7–0.75] 0.73 [0.7–0.75] .836 0.73 [0.7–0.75] .691
55 0.71 [0.67–0.75] 0.70 [0.67–0.74] .251 0.69 [0.66–0.73] .015
All 0.74 [0.73–0.76] 0.74 [0.73–0.76] .15 0.74 [0.73–0.76] .776

Note: Each model was compared to a baseline model derived from patient-only information. 95% CI and P values were calculated using DeLong’s method.
a P-values are for the comparison with the “patient data only” model.

Figure 2. AUC (AþC) and sensitivity (BþD) of the prediction models, as a function of the age of the subject and the data used. Top (AþB): plots for the

diabetes prediction models; Bottom (CþD): plots for the ASCVD prediction model. The added value of family history (blue and orange lines) over patient

only information (black line) is shown.
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performance metrics for all models and all age groups are pro-
vided in Supplementary Table S3 in Supplementary Appendix
S3. Among all age groups studied, maternal information was
more predictive than paternal information for future diabetes
in the offspring (Supplementary Figure S1 in Supplementary
Appendix S3).

For the subject, the top risk factors for diabetes by model
information gain were laboratory tests suggestive of prediabe-
tes hyperglycemia (glucose levels of 5.56–6.94 mmol/L [100–
125 mg/dL] or hemoglobin A1C of 39–47 mmol/mol [5.7%–
6.4%]). Demographic features such as male gender, number
of children, place of residence, and ethnicity were also associ-
ated with an increased risk for developing diabetes. In addi-
tion, features suggestive of metabolic syndrome were
predictive of diabetes (hypercholesterolemia, hyperlipidemia,
obesity, hypertension). For both parents, the top risk factors
for future diabetes in their child were all related to the diagno-
sis of diabetes and its complications recorded in the parental
EHR. A detailed summary is found in Table 4.

ASCVD

The subjects included 11 715 cases of ASCVD (10.6%). The
median age of diagnosis (as recorded in the EHR) was 51.0%
(IQR 46.5–54.5) and 72.2% were male (OR¼ 3.0, Table 1).
The ARR for a subject having ASCVD was 1.50 (95% CI
1.11–2.02) if the father had CVD and 1.14 (95% CI 0.9–
1.43) if the mother had CVD (Table 2). Overall, the addition
of parents’ information provided marginal value for the pre-
diction of ASCVD. Other than the age group of 45–50 years,
in which parents’ information provided small but statistically
significant improvement to the model’s accuracy (AUC of
0.744 vs 0.733, P¼ .017), in all other age groups no such
improvement was noted. Nonetheless, cases where a high risk
for ASCVD was predicted based on the parents’ data, were
indeed at increased risk for ASCVD, regardless of the out-
come predicted based on the patient’s own EHR

(Supplementary Table S2 in Supplementary Appendix S3).
Further information on the ASCVD model and analysis can
be found in the Supplementary Material (Supplementary
Appendix S4).

DISCUSSION

Parental information from data-driven family history
(DDFH) provided some improvement for the prediction of
diabetes risk (AUC¼ 0.8 vs 0.78, P< .001), especially among
subjects younger than 55 years of age. For ASCVD, while
positive FH was associated with increased risk (RR of up to
3.11), it did not provide significant predictive value beyond
the subject’s own information when incorporated within a
prediction model. We found that maternal medical history
was more predictive of the subject’s health than paternal med-
ical history (Supplementary Figure S1 in Supplementary
Appendix S3 and Supplementary Figure S1 in Supplementary
Appendix S4). We found no significant improvement when
including parents’ entire detailed EHR, compared to using
binary flags indicating whether each parent met the diabetes
case definition.

There are several potential practice implications for adopt-
ing DDFH. In current clinical practice, FH is based on
patients’ self-reports. These self-reports are often unavailable
at the point of care as they are either missing altogether,
obtained too late (ie, after a patient has been diagnosed), or
with inaccessible documentation (eg, hidden as free-text
within a clinical note).1,17,20 DDFH can make this informa-
tion more easily available and in a timely fashion. We show
that the number of patients needed to be screened to identify
one otherwise missed subject would be 550 for the 55–
60 years age group, 200 for the 40–45 years age group, and
possibly even lower for younger patients. Furthermore, we
examine the added value of DDFH in comparison to a Ran-
domForest machine learning model that takes into account

Table 4. Top 20 risk factors for developing diabetes within the next 10 yearsa

Child/subject Father Mother

Lab: glucose (5.56–6.94) DX: Diabetes mellitus DX: Diabetes mellitus
Lab: hemoglobin A1C (39–47) Lab: Hemoglobin A1C (H) Lab: Hemoglobin A1C (H)
Lab: triglycerides (H) DX: Diabetic retinal microaneurysms Meds: blood glucose lowering agents, excluding insulin
Dem: Jewish Meds: blood glucose lowering agents, excluding insulin. Meds: Insulin and analogues
Dem: district Lab: MCV (L) DX: Diabetes mellitus, adult onset
Dem: sex Lab: Microcytes % (H) Lab: Iron (L)
Lab: uric acid (H) DX: Diabetes mellitus, adult onset DX: Diabetic retinal microaneurysms
Dem: number of children DX: Retinopathy diabetic Proc: Panoramic X-ray
Lab: GPT (H) Meds: Insulin and analogues Meds: High ceiling diuretics
DX: smoker Lab: Glucose (H) DX: Retinopathy, diabetic
Lab: HDL cholesterol (L) Lab: Phosphorus (H) Lab: CPK MB (taken)
DX: obesity Lab: Fructosamine (H) Lab: Album/creatinine ratio (H)
DX: essential hypertension Lab: MCH (L) DX: Biliary colic
DX: hyperglycemia Lab: Hypochromia (L) Lab: Bilirubin indirect (L)
DX: impaired fasting glucose Lab: Albumin (L) Lab: Microalbumin urine, (H)
Meds: ACE inhibitors Lab: HCO3 (H) DX: Congestive heart failure
DX: obesity (BMI>30) DX: Peripheral vascular disease Lab: Albumin (L)
Lab: LDL cholesterol (taken) Proc: Panoramic X-ray Lab: Fructosamine (N)
Lab: WBC (H) DX: Diabetes, routine follow-up DX: Dehydration
DX: fatty liver Proc: Hospitalization Lab: Microalbumin, 24 h urine (taken)

a Variables are ordered by their relative contribution (gain) for each tree in the model. Lab tests: unless a specific threshold/value is indicated, these refer
only to the ordering of the test. H: high; L: low; Dem: demographics; DX: diagnosis; Meds: medications; Lab: laboratory. The xgb.importance function in R
was used to extract the relative contribution (gain) of each feature for each tree in the model, summed over all trees.

Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 12 1921

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/30/12/1915/7236560 by H
ebrew

 U
niversity of Jerusalem

 user on 04 January 2024

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad154#supplementary-data


the entire EHR record of the patient. In reality, such models
often do not exist, thus this may represent an overly ambi-
tious bar to surpass. Testing the contribution of DDFH for
overall risk stratification, we show that its RR is around 2.0
for diabetes and 1.5 for ASCVD, making it a significant risk
factor to consider when evaluating a patient at the clinic.

From a research standpoint, the current study provides a
unique opportunity to examine the contribution of FH for
specific health conditions. Traditionally, studies aiming to
evaluate the contribution of FH to the prediction of a subject’s
health outcomes are based on self-reported FH provided by
the subject. These studies often suffer from several limitations
intrinsic to the design, including the lack of a standard case
definition for what constitutes a positive FH, inability to vali-
date the subject’s self-reported FH, and biases in reporting
such as recall bias (eg, patients with diabetes are more likely
to know if their relatives had diabetes than patients without
diabetes). These limitations can lead to both under- and over-
estimation of risk associated with a positive FH. DDFH can
overcome many of these challenges.

Deriving DDFH requires linkage of records between family
members, who often are not part of the same care provider or
insurer, and a framework for obtaining parents’ consent to
use their information to predict the clinical outcome of their
children. However, our results suggest that full linkage of the
records may not be necessary, and that sharing only EHR-
derived case definitions between parents and their children
may be sufficient for improving clinical predictions. Interoper-
ability will be an important challenge for adoption of this
platform, perhaps making it initially more relevant for large
care providers with many family groups in the covered popu-
lation. If proven successful, solutions such as Fast Healthcare
Interoperability Resources (FHIR) or interoperability plat-
forms such as those used for opiate prescriptions, may help
introduce this platform into smaller healthcare systems.
Implementation of DDFH also raises certain ethical questions
that will need to be addressed. Data availability can differ
among subjects, as not all patients live within the same health
system catchment area as their parents. These variations in
data availability could affect prediction accuracy and, subse-
quently, the quality of care received by different patients.
Presently, healthcare decision-making does not sufficiently
incorporate family history. While this study does not propose
a comprehensive solution to address this problem, it demon-
strates that, when accessible, DDFH information can be used
to improve upon current predictions. To ultimately extend
this opportunity to all, a long-term goal of this study is to
build the evidence base for the value of data-driven FH for
clinical decision-making. Such evidence is necessary to moti-
vate the design and implementation of a future opt-in data
sharing framework, enabling individuals to voluntarily share
certain aspects of their medical history with family members,
including across healthcare systems.

The results of our data-driven approach are in-line with
those found in previous studies. Prior studies have failed to
show that FH has a significant contribution for predicting
ASCVD over and above the information available on the sub-
ject and it is not part of accepted clinical risk scores (eg, Fra-
mingham risk score, the pooled cohort equation, or the
European SCORE).38 Our finding that maternal medical his-
tory has greater predictive value than paternal medical history
for the prediction of diabetes is also supported by previous
studies.39–42 Our data-driven design and the large sample size

of the study population also enable us to answer questions
that were not feasible in previous studies. For example, we
can observe that the added predictive value contributed by
parental information declines with increasing age of the sub-
ject. There are several possible explanations for this observa-
tion: younger subjects have less available information,
making parental data more crucial; the increasing impact of
environmental factors and exposures over time (eg, stress,
obesity, etc.); and earlier predictions correlating with younger
parent age, which suggests an earlier diagnosis for the parent
and increased risk for the subject.43

This study has several limitations. First, while data records
reach back a few decades in some cases, in many cases com-
prehensive digital documentation was only available from
2003 onward. Thus, parental information, in some cases dat-
ing back to earlier years, may be incomplete. While these data
are often captured indirectly in future years for which we
have documentation (eg, purchase of insulin anytime between
2003 and the index date for parents with an earlier diagnosis
of diabetes), exact dates prior to 2003 were not always avail-
able. This would be less of an issue in the future, as with time,
more data accumulate in the electronic medical records of
subjects and their parents, potentially improving such predic-
tions. Second, to preserve patient privacy, we did not have
access to the full medical charts of the subjects. Thus, we were
not able to validate our case definitions. Nevertheless, we
used case definitions based on prior studies conducted using
the same data repository and validated ICD-based case defini-
tions that are commonly used for such purposes. Third, as we
did not have information on the setting in which lab tests
were taken, we could not rely on lab tests alone to make the
diagnosis of diabetes. Thus, while 2 separate measures of
blood glucose over 11.11 mmol/L (200 mg/dL) may be suffi-
cient for the diagnosis of diabetes in a clinical setting, we had
to exclude these patients if there was no other documentation
to support this diagnosis.

Finally, the data used in the present study, which includes
the information necessary to link medical records between
family members, are not readily available in many healthcare
systems. Thus, implementation of the models as-is may not
presently be possible in other settings. Nevertheless, as men-
tioned above, full linkage of the records may not be necessary,
as sharing of an EHR-derived binary case definition may suf-
fice. Previous studies have demonstrated creative ways of link-
ing EHR records without explicit linkage data but instead
using patients’ contact information.44 Our findings and the
framework we provide can be useful for a cost-effectiveness
analysis aimed at quantifying the tradeoff between the infor-
mation gain and the risk it poses for patient privacy and the
financial costs of creating a family-linked EHR system. This
analysis can inform scientists and decision makers considering
the development and adoption of a robust policy framework
to facilitate safe information sharing among family members
and their care providers.

In conclusion, data from the electronic medical records of
family members have the potential to address many of the
shortcomings of relying on patient self-reports to collect fam-
ily history information. We show that parental information
can significantly improve clinical predictions for some condi-
tions, but not for all, and that this information is especially
useful among younger adults. Enriching patients’ medical
records with EHR-driven FH can improve screening and
delivery of personalized medicine. Future studies can build
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upon the framework provided in this study to investigate the
effect of maternal and paternal health history across a broad
range of diseases.
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