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Analogies have been central to creative problem-solving throughout the history of science and technology.

As the number of scientific articles continues to increase exponentially, there is a growing opportunity for

finding diverse solutions to existing problems. However, realizing this potential requires the development

of a means for searching through a large corpus that goes beyond surface matches and simple keywords.

Here we contribute the first end-to-end system for analogical search on scientific articles and evaluate its

effectiveness with scientists’ own problems. Using a human-in-the-loop AI system as a probe we find that our

system facilitates creative ideation, and that ideation success is mediated by an intermediate level of matching

on the problem abstraction (i.e., high versus low). We also demonstrate a fully automated AI search engine

that achieves a similar accuracy with the human-in-the-loop system. We conclude with design implications

for enabling automated analogical inspiration engines to accelerate scientific innovation.
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1 INTRODUCTION

Analogical reasoning has been central to creative problem solving throughout the history of sci-
ence and technology [32, 43, 50, 54, 60, 86]. Many important scientific discoveries were driven by
analogies: the Greek philosopher Chrysippus made a connection between observable water waves
and sound waves; an analogy between bacteria and slot machines helped Salvador Luria advance
the theory of bacterial mutation; a pioneering chemist Joseph Priestly suggested charges attract
or repel each other with an inverse square force by an analogy to gravity.
Today the potential for finding analogies to accelerate innovation in science and engineering

is greater than ever before. As of 2009 fifty million scientific articles had been published, and the
number continues to grow at an exceedingly fast rate [12, 28, 68, 85]. These articles represent
a potential treasure trove for finding inspirations from distant domains and generating creative
solutions to challenging problems.
However, searching analogical inspirations in a large corpus of articles remains a longstand-

ing challenge [34, 44, 83, 99]. Previous systems for retrieving analogies have largely focused on
modeling analogical relations in non-scientific domains and/or in limited scopes (e.g., structure-
mapping [36–38, 42, 106], multiconstraint-based [33, 59, 65], connectionist [57], rule-based reason-
ing [3, 15, 16, 110] systems), and the prohibitive costs of creating highly structured representations
prevented hand-crafted systems (e.g., DANE [65, 109]) from having a broad coverage of topics and
being deployed for realistic use. Conversely, scalable computational approaches such as keyword
or citation based search engines have been limited by a dependence on surface or domain similar-
ity. Such search engines aim at maximizing similarity to the query which is useful when trying to
know what has been done on the problem in the target domain but less useful when trying to find
inspiration outside that domain (for example, for Salvador Luria’s queries: “how do bacteria mu-
tate?” or “why are bacterial mutation rates so inconsistent?”, similarity maximizing search engines
may have found Luria and Delbrück’s earlier work on E.coli [81] but may have failed to recognize
more distant sources of inspiration such as slot machines as relevant).
Recently a novel idea for analogical search was introduced [61]. In this idea what would other-

wise be a complex analogical relation between products is pared down to just two components:
purpose (what problem does it solve?) and mechanism (how does it solve that problem?). Once many
such purpose and mechanism pairs are identified, products that solve a similar problem to the
query but using diverse mechanisms are searched to help broaden the searcher’s perspective on
the problem and boost their creativity for coming up with novel mechanism ideas. Anecdotal ev-
idence suggests that this approach may also be applicable to the domain of scientific research.
For example, while building lighter and more compact solar panel arrays has been a longstanding
challenge for NASA scientists, recognizing how the ancient art form of origami may be applied to
create folding structures led to an innovation to use compliant mechanisms to build not just com-
pact but also self-deployable solar arrays [27, 89, 118] (diagrammatically shown in Figure 1). The
first remaining challenge of analogical search in the scholarly domain is how we might represent
scientific articles as purpose and mechanism pairs at scale and search for those that solve sim-
ilar purposes using different mechanisms. Recent advances in natural language processing have
demonstrated that neural networks that use pre-trained embeddings to encode input text can offer
a promising technique to address it. Pre-trained embeddings are real-valued vectors that represent
tokens (Tokenization means breaking a piece of text into smaller units; Tokens can be words, char-
acters, sub-words, or n-grams.), in a high-dimensional space (e.g., typically dimensions of a few
dozens to a few thousands) and are shown to capture rich, multifaceted semantic relations between
words [8, 100]. Leveraging them, neural networks may be trained to identify purposes and mech-
anisms from text [61, 62] to enable search-by-analogy (i.e., different mechanisms used for similar
purposes). Once candidate articles are retrieved, searchers may use them to come up with novel
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Fig. 1. A diagram of two different yet analogical approaches (dashed arrow) for building lighter and more
compact solar arrays, and their representations in purposes and mechanisms.

classes of mechanisms or apply them directly to their own research problems to improve upon
the current state. Prior studies in product ideation showed that users of analogical search systems
could engage with the results to engender more novel and relevant ideas [21, 48, 74]. Here, we
study the remaining open questions as to whether such findings also generalize to the scientific
domains of innovation and how they may differ.
In this article, we present a functioning prototype of an analogical search engine for scientific

articles at scale and investigate how such a system can help users explore and adapt distant inspi-
rations. In doing so our system moves beyond manually curated approaches that have limited data
(e.g., crowdsourced annotations in [21] with∼2,000 articles) andmachine learning approaches that
have been limited to simple product descriptions [48, 61, 62]. Using the prototypical system, we
explore how it enables scientists to interactively search for inspirations for their personalized re-
search problems in a large (∼1.7 M) article corpus. We investigate whether scientists can recognize
mapping of analogical relations between the results returned from our analogical search engine
and their query problems, and use them to come up with novel ideas. The scale of our corpus al-
lows us to probe realistic issues including noise, error, and scale as well as how scientists react to
a search engine that does not aim at providing only the most similar results to their query.
In order to accomplish these goals we describe how we address several technical issues in the

design of an interactive-speed analogical search engine, ranging from developing a machine learn-
ing model for extracting purposes and mechanisms in scientific text at a token level granularity,
the pipeline for constructing a similarity space of purpose embeddings, and enabling these embed-
dings to be queried at interactive speeds by end users through a search interface. We construct the
similarity space by putting semantically related purpose embeddings in close indices from each
other such that related purposes can be searched at scale.
In addition to the technical challenges there are several important questions around the design

of analogical search engines that we explore here. A core conceptual difference that distinguishes
analogical search engines from other kinds is that the analogs they find for a search query need to
maintain some kind of distance from the query, rather than simply maximizing the similarity with
it. However, only certain kinds of distance may support generative ideation while others have
a detrimental effect. Another question remains as to how much distance is appropriate when it
comes to finding analogical inspirations in other domains. While landmark studies of analogical
innovation suggest that highly distant domains can provide particularly novel or transformative
innovations [46, 47, 55], recent work suggests the question may be more nuanced and that inter-
mediate levels of distance may be fruitful for finding ideas that are close enough to be relevant but
sufficiently distant to be unfamiliar and spur creative adaptation [22, 39, 49]. Using a concrete ex-
ample from one of our participants who studied ways to facilitate heat transfer in semiconductors,
a keyword search engine might find commonly used mechanisms appropriate for direct applica-
tion (e.g., tweaking the composition of the material) while an analogical search engine might find
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similar problems in more distant domains which suggest mechanisms that inspire creative adap-
tation (e.g., nanoscale fins that absorb heat and convert it to mechanical energy). Though more
distant conceptual combinations may not always lead to immediately feasible or useful ideas, they
may result in outsized value after being iterated on [9, 23, 75].

In the following sections, we explore the technical and design challenges for an analogical search
engine and how users interact with such a system. First, we describe the development of a human-
in-the-loop search engine prototype, in which most elements of the system are functional but
human screeners are used to remove obvious noise from the end results in order to maximize
our ability to probe how users interact with potentially useful analogical inspirations. Using this
prototype we characterize how researchers searching for inspirations for their own problems gain
the most benefit from articles that partially match their problem (i.e., match at a high level purpose
but mismatch at a lower level specifications of the purpose), and that the benefits are driven not
by direct application of the ideas in the article but by creative adaptation of those ideas to their
target domain. Subsequently we describe improvements to the system to enable a fully automated,
interactive-speed prototype and case studies with researchers using the system in a realistic way
involving reformulation of their queries and self-driven attention to the results. We synthesize the
findings of the two studies into design implications for next-generation analogical search engines.
Through extensive in-depth evaluations using an ideation think-aloud protocol [35, 107] with

PhD-level researchers working on their own problems, we evaluate the degree to which inspira-
tions spark creative adaptation ideas in a realistic way on scientists’ own research problems. Unlike
previous work which has often used undergraduate students in the classroom or lab [109], and of-
ten evaluated systems on predetermined problems [40], this study design provides our evaluation
with a high degree of external validity and allows us to deeply understand the ways in which en-
countering our results can engender new ideas. Our final, automated search engine demonstrates
how the human-in-the-loop filtering can be removed while achieving a similar accuracy. We con-
clude with the benefits, design challenges, and opportunities for future analogical search engines
from case studies with several researchers. To encourage innovation in this domain, we release
our corpus of purpose and mechanism embeddings.1

2 SYSTEM DESIGN

The design of our analogical search engine for scientific articles involves three main system re-
quirements. First, a computational pipeline for automatically identifying purposes (what problems
does it solve?) and mechanisms (how does it solve those problems) at scale (e.g., millions of arti-
cles), in a token-level granularity from scientific abstracts. Second, an efficient retrieval algorithm
for incorporating the identified purpose and mechanism texts into the system to enable search-
by-analogy (i.e., article abstracts that contain similar purposes to a query problem but different
mechanisms). Third, end-user interactivity for querying problems of interest (e.g., “transfer heat
in semiconductors,” “grow plants using nanoparticle fertilizers”). We describe the system design
in detail in the following subsections.

2.1 Stage One. Training Seq2Seq Models for Identifying Purpose and

Mechanism Tokens

2.1.1 Overview of Modeling. In the first stage of the system, purpose and mechanism tokens are
identified from article abstracts (Figure 2, 1©). Research article abstracts often include descriptions
of the most important purpose or the core problem addressed in an article and the proposed mecha-
nism or the approach taken to address the problem, making them good candidates for identification

1https://github.com/hyeonsuukang/augmenting_tochi22.
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Fig. 2. Components of our system design that address the three core challenges. 1© Purpose and mechanism
tokens are extracted from article abstracts at scale. We develop Seq2Seq classifiers to classify tokens into
purpose, mechanism, or neither, going beyond previous approaches that worked on sentences or relied on
crowds. 2© We embed the extracted purpose texts using a pre-trained language model (Google’s USE [20])
and train a tree-based index of vectors to place high semantic similarity vectors in close neighborhoods for
efficient lookup. 3© When the user query arrives at the system, it is first embedded with USE. This query
embedding is then used to lookup the pre-computed tree indices for high similarity purpose embeddings.
Article abstracts for the corresponding purpose embeddings are retrieved from Google Datastore. In the
first system, additional human filtering is performed to remove obviously irrelevant results that may have
been included due to model errors. Finally, a set of articles with similar purposes to the query but different
mechanisms are returned to the users for ideation.

and extraction of tokens corresponding to them. For example, for a similar problem of facilitating
heat transfer, Article A may propose an approach that modifies the structure of the material used
at the interface between crystalline silicon (semiconductor material) and the substrate, while Ar-
ticle B may propose a more distant mechanism (due to the mismatch on scale) of fin-based heat
sinks commonly used for electronic devices. The goal of this first stage is to automatically identify
and extract tokens that correspond to the similar purpose (e.g., “facilitate heat transfer”) as well
as the mechanisms (e.g., “modifying the structure of the material used at the interface between
crystalline silicon” vs. “fin-based heat sinks”) from the abstracts A and B.
One relevant automated approach for identifying purposes and mechanisms from scientific ab-

stracts is DISA [63], which formulates the task as supervised sentence classification. However,
we found that many key sentences in abstracts include both purpose and mechanism, breaking
the assumptions of a sentence-level classifier (e.g., “In this article, [a wavelet transforms-based
method] for [filtering noise from images] is presented.”). To overcome this limitation we follow [62]
and frame purpose and mechanism identification as a sequence-to-sequence (Seq2Seq) learning
task [5, 101] and develop deep neural networks with inductive biases capable of learning token-
level patterns in the training dataset. Our dataset consists of crowdsourced annotations from Chan
et al. (the dataset is constructed via application of [21] to a larger corpus of around 2,000 article
abstracts largely in computer science domains) (Table 1). We train the models to classify input
features (tokens or spans of tokens) as either purpose (PP), mechanism (MN) or neither.
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Table 1. Summary Statistics of the Training and Validation
Datasets: The Number of Purpose (PP) and Mechanism (MN)
Tokens, the Number and avg. Token Length of Article Abstracts

Kind (# of articles) Avg. length # of PP # of MN

Train (2021) 196 65,261 120,586
Validation (50) 170 1,510 1,988

We train two deep neural networks (Models 1 and 2), achieving increasing accuracy of classifi-
cation. The first model is based on a Bi-directional LSTM (BiLSTM) architecture for sequence
tagging [56, 64], in which the forward (the beginning of the sequence to the end) and the backward
passes condition each token position in the text with its left and right context, respectively. A main
source of improvement of Model 2 over Model 1 is the ability to more selectively attend to infor-
mative tokens in a sentence rather than treating each token in a sequence as independent of each
other (as a hypothetical example, an extremely effective model based on this approach may assign
more weights to the tokens “selectively attend to informative tokens”, as they represent the core
mechanism described in the previous sentence) and to leverage the regularities of co-occurrence
with surrounding words through the self-attention mechanism [108].

2.1.2 Seq2Seq Model Implementation Details. We implement the BiLSTM architecture of
Model 1 in PyTorch [87]. We use pre-trained GloVe [88] word embeddings with 300 dimensions,
consistent with prior work [11, 78, 88] to represent each token in the sequence as 300-dimensional
input vectors for the model. We train the model with a cross entropy loss objective for per-token
classification in the three (PP, MN, Neither) token classes.
ForModel 2, we adapt the SpanRel [67] architecture and implement it onAllenNLP [41].We im-

plement a self attentionmechanism that tunes weights for the core word in each span as well as the
boundary words that distinguish the context of use, consistent with [79]. We use the pre-trained
ELMo 5.5B [90] embeddings for token representation following the near state-of-the-art perfor-
mance reported in [67] on the scientific Wet Lab Protocol dataset. We train the model using a simi-
lar procedure asModel 1.We leave detailed training parameters forModels 1 and 2 to the Appendix.

2.1.3 Introducing Human-in-the-loop Filtering for Model 1. The final classification performance
(F1-scores) of Model 1 on the validation set is 0.509 (Purpose), 0.497 (Mechanism), and 0.801 (nei-
ther). We found that the limited accuracy contributed to how the system retrieves irrelevant search
results. Because reactions to obviously irrelevant results are not useful, we added a human-in-the-
loop [31] filtering stage. The filtering proceeded as follows: members from the research team in-
putted problem queries received from study participants into the system. Once themodel produced
matches, they went over from the top of the sorted list and removed only those that are irrelevant
to the problem context. They continued filtering until at least 30 articles with reasonable purpose
similarity were collected. After Winsorizing at top and bottom 10% [115], the human filterers re-
viewed 45 articles per query (SD: 27.6, min: 6, max: 138) for 5 queries (SD: 2.4, min: 2, max: 9)
to collect 33 (SD: 3.5, min: 30, max: 40) purpose-similar articles (about 12/45 = 26% error rate). In
Study 1 we show that the limited retrieval accuracy of Model 1 is sufficient for use as a probe with
this additional human-in-the-loop filtering. In Study 2 and case studies, we demonstrate how this
filtering can be removed with Model 2 while achieving a similar accuracy.

2.1.4 Scaling Model Inference. In order to have sufficient coverage to return diverse results,
we collected an initial corpus of 2.8 million research articles from Springer Nature.2 After

2https://dev.springernature.com/.
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Table 2. Corpus Used in the Deployed Search Engine and its Topical
Distribution: Computer Science (CS), Engineering (Eng), Biomedicine

(BioMed), and Business and Engineering (B & Eng)

Domain CS Eng BioMed B & Eng Total

Count 675 K 568 K 336 K 145 K 1.7 M

deduplication (based on Digital Object Identifier using BigQuery3) and filtering only articles with
at least 50 characters in the abstract we were left with 1.7 million articles in four subjects (Table 2).
We stored the resulting corpus in Google Cloud storage buckets.4 To scale the classification of
the Seq2Seq models we used the Apache Beam API5 on Google Cloud Dataflow6 to parallelize the
operation.

2.2 Stage Two. Constructing a Purpose Similarity Space

2.2.1 Overview. In the second stage, the identified purpose texts are incorporated into the sys-
tem to enable search-by-analogy of articles that solve similar problems using differentmechanisms,
at an interactive speed (Figure 2, 2©). Relevant previous approaches include Hope et al. [61] which
first clusters similar purposes (through k-means with pruning) and subsequently samples within
each cluster of similar purposes to maximize the diversity of mechanisms (via a GMM approxi-
mation algorithm [92]), or [62] which employs similarity metrics to balance the similarity to a
purpose query and the distance to a mechanism query (and vice versa). In contrast, from pilot tests
in our corpus we discovered that even close purpose matches of scientific articles already had high
variance in terms of the mechanisms they propose. We hypothesize that this may be the case due
to the enormous span of possible research topics and the relative sparseness of their coverage in
our corpus, and/or due to the emphasis on novelty in scientific research that discourages future
articles which might contribute relatively small variations to an existing mechanism. We leave ex-
ploration of these hypotheses for future work and simplify our sampling of the scientific articles
to the one based solely on the similarity of purpose, sufficient for ensuring diversity.
In order to support fast retrieval (e.g., sub-second response time) of articleswith similar purposes

at scale (e.g., millions of articles), we pre-train Spotify’s Annoy7 indices of nearest neighboring pur-
poses. Annoy trains a neural network to assign an embedding vector corresponding to a purpose
to an index in the high-dimensional space that brings it close to other indices of purpose vectors
that have similar meaning (see Section 2.2.3 for details of the metric used for the similarity of mean-
ing). Annoy uses random projection and tree-building (see [1, 2]) to create read-only, file-based
indices. Because it decouples creation of the static index files from lookup, it enables efficient and
flexible search by utilizing many parallel processes to quickly load and map indices into memory.

2.2.2 Interactive Speed. Additionally Annoy minimizes its memory footprint in the process.
This efficiency, critical for real-time applications such as ours, was further validated during our
test of the end-to-end latency on the Web, with the average response taking 2.4 s (SD = 0.56 s).8

The level of latency we observed was sufficiently low to enable interactive search by end users
(both human-in-the-loop filterers in Study One and researcher participants in case studies).

3https://cloud.google.com/bigquery.
4https://cloud.google.com/storage.
5https://beam.apache.org/.
6https://cloud.google.com/dataflow/.
7https://github.com/spotify/annoy.
8We tested with 20 topically varied search queries that have not previously been entered to the engine to test the latency

end-users experience and to exclude the effect of caching from it.
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2.2.3 Implementation Details. To construct the similarity space, we first encode the purpose
texts into high-dimensional embedding vectors which then can be used to compute pairwise se-
mantic similarity. Here, the choice of an encoding algorithm depends on three main constraints.
First, the pairwise similarity, when computed, should correlate well with the human-judged se-
mantic similarity between the purposes. Second, similarity calculation between varying lengths
of texts should be possible because extracted purposes can differ in length. Third, computationally
efficient methods are preferred for scaling. To meet these requirements, we chose Universal

Sentence Encoder (USE)9 to encode purposes into fixed 512-dimensional vectors. USE trains
a transformer architecture [108] on a large corpus of both unsupervised (e.g., Wikipedia) and su-
pervised (e.g., Stanford Natural Language Inference dataset [13]) data to produce a neural network
that can encode text into vectors that meaningfully correlate with human judgment (e.g., evaluated
on the semantic textual similarity benchmark [19]). USE can handle texts of varying lengths (e.g.,
from short phrases to sentences to paragraphs), and with high efficiency [20], thereby making it
suitable for our system.
We pre-compute pairwise similarity of the purpose embeddings and store the indices in neigh-

borhoods of high similarity for fast retrieval of similar purposes. As mentioned before, we train the
Annoy indices on Google Cloud AI Platform.10 We use 1—the Euclidean distance of normalized

vectors (i.e., given two vectors u and v, distance(u, v) =
√
(2 (1 − cos (u, v)))) as a similarity metric

(using a Euclidean distance based metric for nearest neighbor clustering shows good performance,
see [4] for a related discussion on the impact of the distance metric on the retrieval performance).
We set the hyper-parameter k specifying the number of trees in the forest to 100 (larger k’s result
in more accurate results but also decreases performance; see [2] for further details). Empirically,
100 seemed to strike a good balance between the precision-performance tradeoff, thus we did not
experiment with this parameter further.

2.3 Stage Three. Retrieving the Results

In the last stage, the front-end interface interacts with end users and receives problem queries.
These queries are then relayed to the back-end for retrieval of articles that solve similar problems
using different mechanisms. The retrieved articles are presented on the front-end for users to
review (Figure 2, 3©). When a user query is received, the back-end first encodes it using the same
encoding algorithm used as the construction method of the purpose similarity space (i.e., USE).
Using this query embedding, the back-end searches the pre-trained similarity space for articles
with similar purposes. The articles with high purpose similarity are then returned to and displayed
on the front-end. We describe the actual interfaces used in the studies in the corresponding design
sections (Sections 3.2.4 and 3.2.5).

Together the design of our system enabled what is to our knowledge the first functioning pro-
totype of an interactive analogical search engine for scientific articles at scale. In the following
sections, we report on how such a search engine can help researchers find analogical articles that
facilitate creative ideation.

3 STUDY 1: CREATIVE ADAPTATION WITH A HUMAN-IN-THE-LOOP ANALOGICAL

SEARCH ENGINE

In Study 1, we set out to establish the viability of an analogical search engine using a human-in-
the-loop probe in the domain of scholarly recommendations. We investigate whether analogical
search returns a distinct and novel set of articles compared to keyword search results, and capture

9https://tfhub.dev/google/universal-sentence-encoder-large/5.
10https://cloud.google.com/ai-platform.
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participants’ reaction to each result in a randomized order, blind to condition. To deeply under-
stand the process of ideation using analogical articles we ask participants to come up with new
ideas for their own research projects after reviewing each article. Using this data we code ideation
outcomes in depth to explore the various ways in which analogical distance can shape ideation
outcomes, such as inspiring direct transfer of solutions, or sparking adaptation of ideas into novel
combinations.

3.1 Coding Ideation Outcomes

We are interested in studying whether an analogical search engine provides distinctive and com-
plementary value to other commonly used search approaches that rely on surface similarity. In
particular, our focus is on the inspirational value rather than the immediate relevance of search
results or the direct usefulness of solutions. The highest value of creative inspiration often comes
from creatively adapting ideas to reformulate a problem and recognizing new bridges to previously
unknown domains that open up entirely new spaces of ideas. For example, recognizing a connec-
tion from the ancient art form of origami to fold intricate structures with article and building a
sufficiently compact, deployable solar panel arrays and radiation shields led NASA to hire origami
experts [27, 89, 118].

Our approach to measuring ideation outcome is through the use of a quaternary variable cat-
egorizing the types of ideation. To capture the inspirational value of analogical search and move
beyond the measurements focused on the immediate relevance or the direct usefulness we distin-
guish the Creative Adaptation and Direct Application types of ideation. In our studies these two
types corresponded to think-alouds that resulted in novel ideas whereas the rest (Background and
None) corresponded to think-alouds in which no new ideas were produced.

—Creative Adaptation: Novel mechanism ideas that involve substantial adaptation of the
information provided in the article. These ideas are typically associated with a higher uncer-
tainty of success due to the less familiar nature of the domains involved.

—Direct Application: More directly applicable ideas that involve less adaptation than Cre-
ative Adaptation. These ideas are typically associated with a lower uncertainty of success
because researchers are more familiar with the domains.

— Background: The information provided in the article is good for background reading (e.g.,
to learn about other domains).

—None: Did not result in new ideas nor was useful for background reading.

Creative Adaptation ideas generally involved a substantial amount of adaptation, while Direct
Application ideas were closer to the source domain and more directly applicable. For example,
using the data from one of our participants, applying the techniques for manipulating thermal
conductance at solid-solid interfaces was considered a direct application idea for P1 (Figure 3,
left) because he was familiar with the concept of controlling the interfacial thermal conductiv-
ity given the relevant approaches he developed in his current and past research projects. Thus
the connections to the source problem were directly recognizable. On the other hand, creating a
fin-based wall structure for heat transfer was an example of creative adaptation idea (Figure 3,
right) because of its novelty and the participant’s unfamiliarity in relevant domains. The unfa-
miliarity and uncertainty was generally more associated with analogs for creative adaptation than
direct application. On the other hand, the unfamiliarity also sometimes acted as a barrier to partici-
pants’ openness and subsequent ideation. Though challenging, in order to recognize novel connec-
tions to the source problem the participants may need to suspend their early rejection of a seem-
ingly foreign idea and its surface-level mismatches and engage in deeper processing which could
lead to re-imagination and re-formulation of the research problem at hand. To code the Creative
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Fig. 3. Example articles for the purpose of facilitating heat transfer heat in semiconductors. (Top) A Direct
Application article involves directly applicable ideas and techniques for manipulating the interface material
and structure to control thermal conductance. (Bottom) A Creative Adaptation example involves transferring
a distant idea (fin-based design for heat sinks) and creatively adapting it into the target problem context
(designing nano-scale fins that could absorb heat and convert it to useful energy). Figure credits: contact
configurations and interface resistance from [116], fin-based heat sink from [104], nano-fins from [94].

Adaptation and Direct Application types of ideation outcomes, the coders took into consideration
different linguistic and contextual aspects of the descriptions of the ideas and their think-aloud
process (details in Section 3.2.3).

3.2 Design of the Study

3.2.1 Participants. We recruited eight graduate (four women) researchers in the fields of sci-
ences and engineering via email advertisement at a private R1 U.S. institution. Four were senior
PhD students (3rd year or above and one recently defended their thesis) and the rest was 2nd
year or below. Disciplinary backgrounds of the participants included: Mechanical (3), Biomedical
(2), Environmental (1), Civil (1), and Chemical Engineering (1). Once a participant signed up for the
study, we asked them to describe their research problems and send the research team search queries
they use to look for inspirations on popular search engines such as Google Scholar.11 Members of
the research team screened articles with relevant purposes using these queries on the filtering in-
terface (Figure 4, left). Despite our efforts to collect articles over diverse topical areas, the search
engine did not contain enough articles for two of the participants who work on relatively novel
fields (e.g., “machine learning methods of 3D bioprinting”). These participants were interviewed
on their current practices for reviewing prior works and coming up with new ideas for research
and were not included in the subsequent analyses.

3.2.2 Study Procedure and Keyword-search Control. The rest of the participants were then in-
vited to in-person interviews. To ensure that participants would be exposed to a sufficiently diverse
set of analogical mechanisms and to maximize our power to observe the ideation process, we gen-
erated a list of top 30 results from the analogical search engine using the search queries provided

11https://scholar.google.com/.
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Fig. 4. The front-end interfaces. (Left) Human reviewers used this filtering interface to input search queries
received from the participants and remove articles with obviously irrelevant purposes. To assist the reviewers’
filtering process, model predicted purpose (e.g., the noise reduction and time, highlighted in red at the bottom
of the filtering interface) andmechanism (highlighted in green) tokens were also provided alongwith the title
and the abstract text. The background color turned green when the “Similar” button is clicked and red when
the “Dissimilar” button is clicked. (Right) The ideation task interface was populated with a list of human
filtered articles for review by the participants in Study 1 (the order of articles was randomized).

by the study participants. As a control condition we also included top 15 results from a keyword-
based search engine using the standard Okapi BM25 algorithm [82] (k1 = 1.2,b = 0.75) using
the same search queries as the analogical search engine. The order of results in the list was ran-
domized and participants were blind to condition. To account for the difference in the quantity of
exposure in the analysis, we normalized the ideation outcomes by the number of results returned
in each condition. Using this list we employed a think-aloud protocol [80, 107] in which partic-
ipants were presented with the title, abstract, and other metadata of articles and asked to think
aloud as they read through them with the goal of generating ideas useful for their research using
our Web-based interface (Figure 4, right). Although time consuming, this approach allowed us to
capture rich data on participants’ thought process and how those processes changed and evolved
as participants considered how an article might relate to their own research problems. In addition,
we asked the participants to make a judgment on the novelty of each article on a 3-point Likert-
scale. After participants finished reviewing the 45 articles, we interviewed them about their overall
thoughts on the results’ relevance and novelty and whether there were any surprising or unique
results. Each interview lasted about one and a half hours and the participants were compensated
$15/hr for their participation.

3.2.3 Data and Coding. In total, our data consisted of 267 article recommendations for six par-
ticipants and their Likert-scale questionnaire responses measuring the content novelty, after re-
moving 3 within-condition duplicates (these articles included cosmetic changes such as different
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capitalization in the title or abstract). One participant ran out of time towards the end of the inter-
view and only provided novelty measures for the last 17 article recommendations in the random-
ized list. Thus, 250 transcripts of participants’ think-aloud ideation after reading each article were
used for analyzing ideation outcomes. To code the distance between the Creative Adaptation and
Direct Application types of ideation outcomes, the coders took into consideration (1) the verbs
used to describe the ideas (e.g., “design”, “develop”, or “invent” were generally associated more
with distant ideas compared to “apply”, “use”, “adopt”; see Table 3); (2) the context of ideas such as
participants’ expression of unfamiliarity or uncertainty of the domain involved (e.g., “I’m not really
sure” vs. “I’m familiar with this domain”); and (3) participants’ perceived immediacy of the idea’s
applicability (i.e., ideas perceived by participants as more immediately applicable were associated
with direct application but not creative adaptation ideas). Two of the authors coded a fraction of
the data together (13/250, 5.2%) and then independently coded the rest blind-to-condition, using
the four ideation outcomes types described in Section 3.1 and with the following protocol: The
coders first judged the existence of an idea. If there was, then its type was further distinguished
between Creative Adaptation and Direct Application using the linguistic and contextual descrip-
tions described above (e.g., Creative Adaptation ideas were more frequently associated with the
“design” words, higher unfamiliarity and uncertainty of the domains, and less immediate applica-
bility, compared to Direct Application ideas). In case there was no concrete idea in the data, coders
further distinguished between the Background vs. None cases.
The agreement between coders was significant, with Cohen’s κ = 0.89 (near perfect agreement)

for the four categories of ideation outcome. Given the high level of agreement between the coders,
any disagreements were resolved via discussion on a case-by-case basis.

3.2.4 Apparatus 1: The Human-in-the-loop Filtering Interface. In Study 1, members of the re-
search teamfirst received search queries from study participants and reviewed themodel-produced
purposematches to filter irrelevant articles using a filtering interface (Figure 4, left). This additional
step was introduced to ensure that articles with obviously dissimilar purposes are not returned to
study participants. Reviewers determined whether each article contained a clearly irrelevant pur-
pose in which case it was removed by clicking theDissimilar button at the bottom of the article. On
the other hand when the Similar button was clicked it turned the background of the article green
in the interface and increased the number of the articles collected so far. Reviewers continued the
screening process until at least 30 articles with reasonable purpose similarity were collected.

3.2.5 Apparatus 2: The Ideation Task Interface. The filtered articles were then displayed as a
randomized list of articles to study participants (Figure 4, right). In addition to the content and
metadata of articles (e.g., authors, publication date, venue), each article was presentedwith a Likert-
scale question for measuring content novelty and a text input for ideation.

3.2.6 Limitations. To reduce potential biases, our coders were blind to experimental conditions
and relied on participants’ statements of ideas’ novelty and usefulness (e.g., “I’ve never seen some-
thing like this before,” “this is not a domain I would’ve searched if I used Google Scholar”), and
achieved a high inter-rater reliability. We believe coders had a reasonable understanding of how
participants arrived at specific ideas from descriptions of their current and past research topics,
think-alouds, and end-of-experiment discussions. Despite this, we also acknowledge the limita-
tions of this approach and discuss how future research may improve upon it (see Section 7.2.1).

3.2.7 On Reporting the Results. We report the result of our studies below. To denote statis-
tical significance we use the following notations: ∗ (α = 0.05), ∗∗ (α = 0.01), ∗∗∗ (α = 0.001),
∗∗∗∗ (α = 0.0001). Alpha levels were adjusted when appropriate in post-hoc analyses using Bon-
ferroni correction.
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Fig. 5. (Left) Participants judged analogy articles significantlymore novel. Themean response to the question
“Have you seen this article before?” was significantly higher in Analogy: 2.7 (SD: 0.48) than in Keyword: 2.3
(SD: 0.55). (Right) There were significantly more overlapping words between search query terms provided by
participants and the title and abstract text of articles: Keyword: 4.1 (SD: 1.74) vs. Analogy: 1.6 (SD: 1.42).

3.3 Result

Finding novel articles for creative ideas. Our key measure of success is how article recommen-
dations from the analogy search engine (hereinafter analogy articles) help scientists generate cre-
ative ideas for their own research problems. To this end, we investigate (a) whether analogy articles
are novel and complementary to the articles found from the keyword-search baseline (hereinafter
keyword articles) and (b) whether analogy articles resulted in more creative adaptation ideas than
direct application ideas in ideation.

3.3.1 Analogy Articles Differed from Keyword Articles and were Judged more Novel. The viability
of our approach is based on the assumption that the analogy search pipeline returns a different
distribution of results than a keyword-based baseline. This assumption appeared to hold true: the
keyword-search and analogy-search conditions resulted in almost completely disjoint sets of ar-
ticle recommendations. Out of the total 267 articles, the overlap between analogy and keyword
articles was only one. Analogy articles appeared to represent a complementary set of results users
would be unlikely to encounter through keyword-based search.

To further examine this assumption we had participants rate the novelty of the results by asking
them “have you seen this article before?” on a 3-point Likert scale response options of 1: “Yes, I
have seen this article before”, 2: “Yes, not exactly this article but I have seen similar ideas before”,
and 3: “No, I have not seen anything like this before”. Participants found articles recommended in
the analogy condition to contain significantly more novel ideas (2.7, SD: 0.48) compared to the
keyword condition (2.3, SD: 0.55) (Welch’s two-tailed t-test, t = −5.53,p = 1.33 × 10−7) (Figure 5,
left). Participants thought the “variance in results is much higher than using other search engines”
(P5) and “there’re a lot of bordering domains. . . which can be useful if I want to get ideas in them”
(P4).

This difference was also reflected in the content of articles, with keyword articles having signifi-
cantly more overlapping terms with participant-provided query terms (4.1, SD: 1.74) than analogy
articles (1.6, SD: 1.42) (Welch’s two-tailed t-test, t (145.27) = 11.70,p = 1.10 × 10−22) (Figure 5,
right).12 More occurrences of familiar query terms in keyword articles’ titles and abstracts may
have led participants to perceive them as more familiar.

12We measured the term overlap between participants’ queries and the content of articles (title and abstract). To preprocess

text, we used NLTK [10] to tokenize articles’ content, remove stopwords, digits, and symbols, and lemmatize adjectives,

verbs, and adverbs. Finally, using the processed tokens we constructed a set of unique terms for each article and the query

which was then compared to find overlapping terms.
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Fig. 6. Frequency of the ideation outcome types by condition. Darker colors represent higher rates. Creative
adaptation is 5.3 times more frequent among analogy articles (53 in Analogy vs. 10 in Keyword), while most
of direct application is from keyword articles (3 in Analogy vs. 16 in Keyword). The distributions differed
significantly (chi-squared test, χ2 (3) = 52.12,p < 1.0 × 10−10 overall and χ2 (1) = 28.41,p = 9.84 × 10−8 for
the contrast between the rates of creative adaptation and direct application ideas).

3.3.2 Analogy Articles Resulted in more Creative Adaptation Ideas than Direct Application Ideas.
We found that the distribution of ideation outcome types differed significantly between analogy
and keyword articles (χ 2 (3) = 52.12,p < 1.0 × 10−10). Participants came up with more creative
adaptation ideas (N = 53; 32% of total) over direct application ideas (N = 3; 2%) using analogy
articles. In contrast, keyword articles resulted in more direct application ideas (N = 16; 19%) than
creative adaptation ideas (N = 10; 12%) (Figure 6). The difference between creative adaptation and
direct application was significant (χ 2 (1) = 28.41,p = 9.84 × 10−8).

To illustrate more concretely the divergent patterns of ideation leading to Creative Adaptation
and Direct Application ideas, we describe vignettes from three participants (Table 3). While Direct
Application ideas represented close-knit techniques and mechanisms directly useful for the source
problem (described with verbs such as apply and adopt), Creative Adaptation type ideas were more
distant from the source problem and could be characterized with the use of different verbs asso-
ciated with significant adaptation (design and invent). For example, P1’s research focused on the
methods for improving nanoscale heat transfer in semiconductor materials. Previously he devel-
oped mechanisms for manipulating the thermal conductivity at solid-solid interfaces, specifically
by adjusting the semiconductor wall structures. Thus, an article reporting experimental results of
manipulating thermal conductance on planar metallic contact points was deemed a directly useful
article that might contain helpful techniques. On the other hand, an analogy article which dealt
with the heat transfer phenomenon at amacroscale, using fin-based heat sink designs for electronic
devices, gave him a new inspiration: to adapt fins for nanoscale heat transfer in semiconductors
to not only transfer heat but also convert it into a useful form of mechanical energy. Despite the
mismatch on scale ([macroscale]� [microscale]), challenging the assumption of the typical size
of a fin-based design engendered an idea to creatively adapt it to convert heat into energy through
an array of tiny fins, rather than merely dissipating it into space as in the original formulation of
the problem. P1 also found another analogy article focused on thermal resistance at a liquid-solid
interface useful for future ideation because despite its surface dissimilarities, there was a poten-
tial mapping that may open up a new space of ideas (e.g., [liquid]� [polymer substrate], [solid]
� [germanium], yet the pairwise relation [liquid:solid] ↔ [polymer substrate:germanium] may
be analogous and interesting): “This is liquid. . . but it’s about liquid-solid interface which can be
useful. . . because for the substrate that sits on top of silicon or germanium you use polymers which
have liquid-like properties” (P1).
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Table 3. Examples of Direct Application and Creative Adaptation Types for Three Participants (PID)

PID Research Problem Type Article Title→ New Idea (paraphrased)

1

Improve nanoscale
heat transfer in
semiconductor
material

Direct Application

Experimental investigation of thermal con-
tact conductance for nominally flat metallic
contact→Apply the techniques in the arti-
cle to manipulate thermal conductance at
the solid-solid interface

Creative Adaptation

Investigation on periodically developed heat
transfer in a specially enhanced channel→
Design nanoscale “fins” to absorb heat and
convert it to mechanical energy

2

Grow plants better
by optimizing entry
of nanoparticle
fertilizers into the
plant

Direct Application

Nanoinformatics: Predicting Toxicity Us-
ing Computational Modeling → Apply the
computational modeling from the arti-
cle for predicting toxicity of candidate
nanoparticles

Creative Adaptation

Identification of Plant Using Leaf Image
Analysis → Invent a hyperspectral 3D
imaging mechanism for plants that opti-
cally senses, traces, and images plant cells
in 3-dimensional structures

3

Enhance the
evaporation
efficiency of thin
liquid films in heat
pipes and
thermosyphons

Direct Application

Thin film evaporation effect on heat trans-
port capability in a grooved heat pipe →
Adopt the techniques in the article for
manipulating the solid interface’s surface
properties to balance the film thickness
and disjoining pressure

Creative Adaptation

Alkaline treatment kinetics of calcium
phosphate by piezoelectric quartz crystal
impedance→ Design novel liquid film ma-
terials for manipulating hydrophobicity to
change disjoining pressure

Each participant’s research problem is described in the Problem column. While the topics of research problems vary,

Creative Adaptation ideas are more distant in terms of content compared to the source problem than Direct Application

ideas are, and may be characterized by the use of different sets of verbs ({design, invent} in Creative Adaptation ideas

versus {apply, adopt} in Direct Application ideas).

In the case of P2, an article focused on computational methods for toxicity prediction was
deemed directly helpful because “if certain nanomaterials are toxic to certain microorganisms that
eat plants or kill them but safe for the plant, we can target these organisms using the nanomate-
rials as pesticide. Another way this can be helpful is in predicting the chance of toxicity of the
nanoparticles in our fertilizers” (P2). Whereas an analogy article that uses image analysis for plant
identification reminded her of “hyperspectral imaging in plants, like a CT scan for plants. So mak-
ing a hyperspectral 3D model using something like this. . . to optically sense and trace plant cells
(such that the entry of fertilizer nanoparticles into plant cells can be monitored, a sub-problem of
P2’s research problem) would be pretty cool.”
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Table 4. Examples of Different Purpose-match Types

Purpose-Match PID Participant Comment

Full 2
“It’s a little bit old (from 2010) but I have read articles from that era.
I love this. . . because the article mentions everything else and espe-
cially one word which is “disjoining pressure”—if I were to publish
my current project that’s going to be the core topic.”

Part 1
“Though I’m not familiar with GFRP-GFRP. . . but I can see that
they’re referring to glass fiber reinforced plastic, so this is something
not crystalized material. . . learning about this kind of materials is in-
teresting.”

None 3
“I don’t know what a lot of words mean. I don’t typically work with
animals cells.”

Purpose-Match shows the level of purpose-match between a recommended article and each participant’s research

problem (see Table 3 for descriptions of research problems). Fully matching purposes are those that match at both high-

(more abstract) and low-levels (specific details). Partial matches only match at the high-level abstraction and differ in

details. The Participant Comment column shows relevant excerpts from the participant.

As a third example, P6’s research focused on recording and simulating electrical activity us-
ing microelectrode arrays. To him, an analogy article about printing sensors for electrocardio-
gram (ECG) recording seemed to present an interesting idea despite its mismatch in terms of
scale ([nanoscale]� [macroscale]) andmanufacturingmechanism ([fabrication]� [printing]), be-
cause the pairwise relation between [nanoscale:fabrication]↔ [macroscale:printing] engendered
a reflection on the relative advantages of different methods and future research directions): “Inter-
esting idea! Instead of nanoscale fabrication, printing can be a good alternative for example for
rapid prototyping. But I think the resolution won’t be enough (for use) in nanoscale. . . works for
this particular article’s goal, but an idea for future research is whether we can leverage the benefit
of both worlds—rapid printing and precision of nanoscale fabrication” (P6).

3.3.3 The Level of Purpose-match had Different Effects on the Ideation Outcome. Suggested in
these examples is a certain kind of distance the ideas in analogy articles maintain in order to spur
creative adaptation. We hypothesize that some amount of difference in purpose facilitates creative
adaptation. This process may involve a curvilinear relationship between the degree of purpose
mismatch and the resulting ideation outcome, with too much or too little deviation leading to a
little-to-no benefit or even an adverse effect on the ideation outcome, a pattern that is consistent
with the findings in the literature of creativity and learning outcomes (e.g., Csikszentmihalyi’s
optimal difficulty [25]). For this analysis, we coded each article based on three levels of purpose-
match to the source problem:

— Full: Both high- and low-level purposes match.
— Part: Only the high-level abstract purpose matches. Explicit descriptions of the high-level
purpose exist in either title and abstract of the article. At the same time, certain low-level
aspects of the participant’s research problem are mismatched as evidenced by relevant com-
ments from the participant.

—None: Neither high- nor low-level purposes match.

Examples of these types of purpose-match are provided in Table 4. High-level match can be
considered as a first-order criterion of purpose match and low-level match as a second-order cri-
terion: If the article does not have overlapping terms in terms of its purpose with the user query
cast at a high level (e.g., transfer heat, grow plants) then the low-level match does not matter, but
if the article’s purpose matches at the high level, its low-level alignment (e.g., specific aspects of
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Table 5. Regression Table of Three Mediation Analyses using Purpose-match, Novelty and Pid (Participant
ID) as Mediators between Condition and the Binary Creative Adaptation Outcome Variable

Effect of Condition Unique Effect Indirect Effect CI 95%

Mediator on Mediator (a) of Mediator (b) (a × b) Lower Upper

Purpose-match
−0.42∗∗∗∗ 0.21∗∗∗∗ −0.09∗∗∗∗ −0.14 −0.05
(.08) (.05)

0.40∗∗∗∗ −0.06 −0.02 −0.07 0.02
Novelty

(.07) (.05)

Pid
−0.02 0.03∗ −0.001 −0.02 0.02
(.22) (.02)

Purpose-match was the only significant mediator between Condition and Creative Adaptation (indirect effect = −0.09,
significant using a bootstrapping method [91] with 1,000 iterations, p < 2 × 10−16).

the purpose, such as its scale or materialistic phase) will additionally determine full (i.e., aligned
in both high- and low-level aspects of the purpose) vs. partial match (i.e., aligned only in the high-
level but not low-level aspects of the purpose). Therefore, the coding procedure was symmetrical
to the procedure described for coding four types of ideation outcome, with the high-level purpose
match deciding between {Full, Part} and None match types, while the low-level purpose further
distinguishing between Full vs. Partial match. Following this procedure, two independent coders
achieved an inter-rater reliability Cohen’s κ = 0.72 (substantial agreement) and disagreements
were resolved with case-by-case discussion.

We used the mediation package13 [105] to conduct a mediation analysis between the condition,
the kind of purpose-match, and the binary Creative Adaptation ideation outcome. The analysis
showed that the effect of condition (Keyword vs. Analogy) on the binary outcome of creative adap-
tation was mediated by the degree of purpose-match, but not by the novelty of content, suggesting
that the difference between full vs. partial matching on purpose is much more significant than
the variance in the content novelty. We come back to this result in the discussion (Section 7.2.3).
Table 5 presents the result of the mediation analyses. The regression coefficient between creative
adaptation and condition was significant as was the regression coefficient between the degree of
purpose match and creative adaptation. The indirect effect was (−0.42)× (0.21) = −0.09. We tested
the significance of this indirect effect using a bootstrapping procedure [91] (p < 2×10−16), by com-
puting the unstandardized indirect effects for each of 1,000 bootstrapped samples as well as the
95% confidence interval (CI).14

Partial purpose matches in both keyword and analogy articles led to creative adaptation, but the
rate was significantly higher with analogy articles. As expected, the ratio of direct application de-
creased from the keyword articles that fully match in purpose (Keyword Full, 68%) to the keyword
articles that partially match in purpose (Keyword Part, 6%) (Figure 8). At the same time, the rate
of creative adaptation increased from the keyword articles that fully match in purpose (Keyword
Full, 0%) to the keyword articles that partially match in purpose (Keyword Part, 21%). However,
the rate of creative adaptation differed significantly between the keyword and analogy articles,
with the rate more than doubling among the analogy articles over keyword articles (Analogy Part
47% vs. Keyword Part 21%). Homing in on the partial matches, these articles led to creative adap-
tation ideas significantly more often in analogy search (47%) than keyword search (21%) (Welch’s

13https://cran.r-project.org/web/packages/mediation/index.html.
14Alternatively, it is possible that the mediating effect of the degree of purpose-match on the likelihood of creative adapta-

tion outcome is moderated by novelty. However, the result of our analysis showed that this was unlikely: The effect was

insignificant using the bootstrapping method −0.04, (p = 0.12, 95% CI = [−0.09, 0.01]).
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Fig. 7. Proportion of creative adapta-
tion ideas among the partial purpose-
match articles. Creative Adaptation
was significantly more frequent
among the analogy articles (47%)
than keyword articles (21%) (Welch’s
two-tailed t-test, p = 9.0 × 10−4.

Fig. 8. The rate of ideation outcome types in full and partial pur-
pose matches. Among the keyword articles as the purpose mis-
match increases, the rate of creative adaptation also increases
from 0% to 21% (middle). However, this rate is significantly higher
among the analogy articles (47%) than the keyword articles (21%).
Note that while purpose mismatches led to more creative adapta-
tion among analogy articles, a large portion of them also resulted
in no ideation outcome (38%).

two-tailed t-test, t (112.22) = −3.40,p = 9.0 × 10−4, Figure 7, left). While the partial purpose mis-
match was highly associated with creative adaptation ideas, it could be a double-edged sword.
Among the analogy articles, 38% of the partial mismatches resulted in no useful ideation outcome
as opposed to the 47% that resulted in creative adaptation (Figure 8, Analogy Part). Therefore,
knowing what mismatches are beneficial to creative adaptation has important implications
for facilitating generative misalignment for ideation.

4 STUDY 2: ENABLING A FULLY AUTOMATED ANALOGICAL SEARCH ENGINE

4.1 Motivation and Structure of the Study

The findings of Study 1 suggest potential benefits of an analogical search engine for scientific re-
search, but a core limitation of interactivity due to the human-in-the-loop system design prevented
its use as a more realistic probe for understanding researchers’ natural interaction with analogical
results. Specifically, the results of Study 1 are limited by the lack of participants’ ability to refor-
mulate search queries and the study design that involved returning only a fixed number of articles
that blended both keyword and analogy articles in a randomized order. These factors significantly
deviate from realistic usage scenarios of a deployed analogical search engine and prevent us from
observing the full scope of user interaction. In order to move beyond these limitations, first we
need a fully automated pipeline that removes the need for human-in-the-loop filtering, thus al-
lowing us to enable query reformulation and interaction with corresponding search results. To
achieve this, we improved the model accuracy on extracting purposes and mechanisms from arti-
cle abstracts by training a more sophisticated neural network that leverages more nuanced linguis-
tic patterns. Specifically, we implemented an attention mechanism within a span-based Seq2Seq

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 57. Publication date: November 2022.



Augmenting Scientific Creativity with an Analogical Search Engine 57:19

model (Model 2) such that it could learn words that frequently co-occur to describe coherent pur-
poses or mechanisms in article abstracts, and as a result, learning more informative words for our
purpose (see Appendix for details of implementation). Through evaluating the system backed by
this improved pipeline, we demonstrate how it can remove the human-in-the-loop while maintain-
ing similar levels of accuracy. In the following sections, we report the evaluation results that show
(1) an improved token-level prediction accuracy using the span-based Model 2; (2) rankings of the
results aligning well with human-judgment of purpose-match from Study 1; and (3) top ranked
results of the system maintaining a similar rate of partial purpose matches relative to that of the
human-in-the-loop system from Study 1.
The interactivity enabled by the automated analogical search pipeline further allows us to ob-

serve its use in more realistic scenarios. To probe how researchers would interact with an analog-
ical search engine and what challenges they might face in the process, we ran case studies with
six researchers (Section 5). From these studies, we uncover potential challenges (Section 5) and
synthesize design implications for future analogical search engines (Section 6).

4.2 Result

4.2.1 Improved Token-level Prediction of a Span-basedModel. First we compared the span-based
Model 2 with five other baselines to evaluate the token-level classification performance (Table 6).
Model 2’s overall F1 score was the highest at 0.65 (Purpose; PP: 0.65, Mechanism; MN: 0.64, an
0.14- and 0.14-absolute-point increase from Model 1, respectively) on the validation set which
represents an overall 0.15-absolute-point increase from Model 1 used for the initial human-in-the-
loop analogical search engine.

4.2.2 Pipeline with a Span-based Model Reflected Human Judgment for Ranking the Results. The
improved token-level prediction performancematerialized as an increase in the pipeline’s ability to
judge the degree of purpose match. For this evaluation, we first recorded every query provided by
Study 1 participants that human-in-the-loop filterers used to search and filter the relevant articles.
Then, we simulated the search condition of the filterers for the automated pipeline by providing it
input as the exact queries they used. We capped the number of top search results sufficiently large
at 1,000 for each query. From these top 1,000 results, we selected articles that also appeared in the
human-in-the-loop system and collected the corresponding human-vetted judgments of high or
low purpose-match. For each of these articles, we also collected its corresponding rank positions
on the new (automated) pipeline’s list of results.
We compared the mean ranks of articles that are judged by human filterers as high purpose

match to those of low purpose matches. The result showed that the new pipeline indeed was able
to distinguish between the two groups of articles; low purpose matches (i.e., articles that were
deemed not relevant and subsequently filtered by the judges in Study 1) were placed at significantly
lower positions on the list than high purpose matches (i.e., unfiltered articles in Study 1). The mean
rank for low purpose matches was 465 while for high purpose matches it was 343 (Figure 9). This
difference was significant (t (192.49) = 3.29,p = 0.0012. Welch’s two-tailed t-test.).

4.2.3 Different Model Performance on Finding Articles that Fully or Partially Match on Purpose.
Data and coding. In addition to the overall rankings reflecting human-vetted judgments we
also found that the proportion of partial purpose matches was significant among the top-ranked
results. We sourced top 20 results for each participant’s research problem with the automated
system (Model 2) using the exact queries and order used by the human-in-the-loop filterers in
Study 1. We compared this to four other approaches: (1) the human-in-the-loop system in Study 1
(BiLSTM with filtering), (2) a BiLSTM-based system excluding the human-in-the-loop from 1 (BiL-
STM), (3) randomly sampled articles (Random), and (4) a keyword-based search results, which was
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Table 6. F1 Scores of Different Models, Sorted by the Overall
F1 Score of Purpose (PP) and Mechanism (MN) Detection

Model
Embedding

All PP MN
(finetuned)

1. Model 2 [67] ELMo (N) 0.65 0.65 0.64

2. BiLSTM ELMo (N) 0.63 0.67 0.59

3. BiLSTM SciBERT (N) 0.62 0.69 0.55

4. BiLSTM-CRF [90] ELMo (N) 0.58 0.59 0.57

5. BiLSTM GloVe (Y) 0.55 0.56 0.53

6. Model 1 GloVe (N) 0.50 0.51 0.50
The span-based Model 2 gave the best overall F1 score (blue). In

comparison, the average agreement (%) between two experts’ and

crowdworkers’ annotations was 0.68 (PP) and 0.72 (MN) [21]. We

used AllenNLP [41] to implement the baseline models 1–5.

Fig. 9. Mean ranks of human-judged high
and low purpose match articles from the
span-based pipeline. Low matches were
ranked significantly lower (the rank num-
ber was higher), on average at 465th (SD:
261.92) than high matches at 343th (SD:
279.48).

used as control in Study 1 (Keyword). There were no overlapping articles between Model 2 and
other conditions except for the Keyword condition which had 1 overlapping article. To code the
degree of purpose match, we blended the results of Model 2, biLSTM, and Random conditions.
Two of the authors coded a fraction of the data together blind-to-condition (7.4%, N = 20/270)
following the same procedure used in Study 1. Then they independently coded the rest blind-to-
condition achieving an inter-rater agreement of κ = 0.80 (substantial agreement). We resolved any
disagreement through discussion on an individual case basis.

Result. We found that the Model 2-based system achieved a parity with the human-in-the-loop
system (Study 1) for finding purpose matches (Figure 10), with more than half of the system’s
top 20 results judged to be partial purpose matches. In contrast, when human-in-the-loop filtering
was removed from the BiLSTM-based system, the frequency of partial purpose matches decreased
from 58% to 37% while the frequency of no matches increased from 40% to 59%. Random sampling
resulted in mostly irrelevant results, with no alignment on purpose with the source problem. An
interesting point of comparison is between the keyword-based and Model 2-based search results.
Keyword search mostly outperformed Model 2-based system by finding full purpose matches at a
much higher rate (23% in keyword search vs. 4% in the Model 2-based system), with similar rates of
partial purpose matches (58% vs. 55%), and significantly less no purpose matches (19% vs. 41%). On
average the purposematch scorewas the highest in keyword-search followed by theModel 2-based
and the human-in-the-loop systems (Figure 11). Combinedwith the results of Study 1, this suggests
the complementary value of analogical search: The higher rate of full-matches in keyword-search
may be good when searchers know what they are looking for, such as in direct search tasks and
foraging from familiar sources of ideas. Nonetheless, because analogy articles were both deemed
significantlymore novel by the scientists and had little-to-no overlap with keyword-search articles,
they augmented keyword-based search results with a complementary set of articles that introduce
useful mismatches in their purposes. This set of articles may open up new domains of ideas that
scientists may not have been aware of, and encourage creative adaptation.

5 CASE STUDIES WITH RESEARCHERS

To further understand what potential interaction challenges prevent future analogical search en-
gines from reaching their full potential, we ran case studies with six participants. To this end,
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Fig. 10. Distribution of Full, Part, and None purpose matches among the five sourcing mechanisms: BiL-
STM with filtering represents the human-in-the-loop system (Study 1); Model 1 represents a system based
on the BiLSTM model alone, without human-in-the-loop filtering; Model 2 represents the fully automated
system; Random represents randomly sampled articles; Keyword represents keyword-based search (Control
in Study 1). Model 2 and BiLSTM with filtering showed a similar distribution of purpose matches, and more
partial purpose matches than BiLSTM alone. Random showed mostly no matches. The Keyword condition re-
sulted in the highest number of fully matched articles and the lowest number of no matches, suggesting that
keyword-based search may be an effective mechanism for direct search tasks, but potentially less effective
for inspirational/exploratory search tasks.

we developed a frontend interface that includes a text input for reformulating purpose queries
(Figure 12, right). This frontend interfaced with our automated, Model 2-based backend to display
a ranked list of analogical results for a given purpose query. Leveraging the fully automated search
engine, we also removed the structure of Study 1 that asked participants to engage with each result
they encountered, thus allowing us to observe which results researchers more naturally attend
to and engage with. In sum, the design of our case studies differ from Study 1 in three aspects:
(1) participants interacted with only the analogical search results ranked in the order of purpose
similarity, without blended keyword-based search results; (2) participants reviewed search results
returned for their queries and reformulated the queries when needed; and (3) participants looked
for articles that interest them and may serve as sources of inspiration for their research problems
at their own pace, without being explicitly asked to engage with each result they encounter.
The primary goal of our case studies was to identify generalizable challenges that analogical

search engines may face in interactive use, thus providing us insights on how future engines may
be designed and improved. Specifically, we were interested in the challenges related to (1) how
researchers recognize relevance of analogical search results and (2) how researchers formulate
and reformulate purpose search queries while interacting with analogical search results.

5.1 Participants and Design

Participants were asked to formulate purpose queries for their own research problems and interact
with the results to find interesting articles. If an article gave them a new idea relevant to their
research project, they were asked to write a short project proposal in a shared Google Doc and
explain how the article helped them to come upwith the idea. Interviewswere conducted via Zoom
and lasted for roughly an hour. Participants were paid $20 in compensation. One participant was
an assistant professor in mechanical engineering at a public R1 U.S. university and five were PhD
researchers in the fields of sciences and engineering at a private R1 U.S. university. Twowere senior
PhD students (3rd year or above) and the rest were 2nd year or below. Disciplinary backgrounds
of the participants included Chemical (2), Civil (3), and Mechanical Engineering (1). We note that
one participant previously took part in Study 1, whose research focus was the same in terms of
its general domain. However, the participant’s ideas and the specific articles of interest that led
to them did not have overlap between the two studies. Table 7 describes participants’ research
problems.
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Fig. 11. The distribution of mean purpose match
scores over different conditions (mappings: None
�→ 0, Part �→ 1, and Full �→ 2). The mean purpose-
match score of the system backed by Model 2
(0.63, SD: 0.56) is significantly higher than that of
the system used in Study 1 without the human-
in-the-loop (BiLSTM, μ = 0.45, SD: 0.58) (Welch’s
two-tailed t-test, t (237.87) = 2.49,p = 0.0135),
similar to that of the system with the human-
in-the-loop (BiLSTM with filtering, μ = 0.62,
SD: 0.52) (t (244.65) = 0.25,p = 0.80), and sig-
nificantly lower than that of the keyword-based
search (Keyword, μ = 1.04, SD:0.65) (t (159.38) =
−4.57,p = 0).

Fig. 12. The search interface used for case stud-
ies featured an input for query reformulation
which participants used to iteratively reformu-
late their queries.

Apparatus: Search interface. The improved performance of Model 2 backed the fully automated
pipeline without human filtering. The search interface interacting with this back-end included a
text input for reformulating purpose search queries as well as a list view of search results that
showed a sorted list of articles with similar purposes (Figure 12).

5.2 Result

5.2.1 Overall Impressions. Overall participants described their experience with the analogical
search engine in a positive light (e.g., “helps me think at a broad topic or a big picture level”—P2;
“find some very interesting and useful ideas, the design is also very simple, good when focusing
on key areas of research”—P5; and “very interested now what the future of this engine would look
like”—P3), but a deeper look suggested that the success of ideation depended on howwell searchers
were able to engage with analogical results that deviate from their expectations: “It’s surprising
that the engine recommends examples like these”—P3; “If I input the same search queries onGoogle
Scholar it’d not normally return these things. . . this search engine works in a different way”—P1.

5.2.2 “Not the Kind of Article I’d Look for but. . .”: The Challenge of Early Rejections. Unlike
similarity-maximizing search engines, the diversity in analogical search results can lead to pre-
mature rejection of alternative mechanism ideas. One of the factors contributing to premature
rejection of alternatives may be the tendency for adherence to a set of existing ideas or concepts,
as studied in the literature of design fixation (e.g., [66]). In our study, the participants found the
variety of domains featured in search results confusing, and it sometimes prevented them from en-
gaging with the ideas therein. For example, P3, whose research studies ways to manage or reduce
task complexity for nuclear power plant operators, expected to see results similar to Google Scholar
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Table 7. Case Study Participants’ Descriptions of Own Research Problems

PID Participants’ Description of Research Problem

1 Improve heat pipe evaporation
2 Computer simulations for fluids in nanoscale and uncovering their heat-transfer

properties

3
Developing a model to identify complex steps in Nuclear Power Plant (NPP) operation,
and understanding what task features and structures cause the complexity and how this
influences the operators’ performance

4 Designing simulators for training bridge inspectors

5
Developing algorithms and extensible frameworks for detecting personal protective
equipment (PPE) in construction sites to improve the safety of construction workers

6 Convergence rates of optimization algorithms under multiple initial starting positions

which are typically in the domains of operational and managerial sciences, but was surprised by
unfamiliar domains represented in search results: “These (distributed networked systems design or
path planning for automated robots) are not the kinds of fields that I normally read in, if I found
them elsewhere I would’ve probably thought they’re irrelevant and skipped” (P3). Ranging from
unfamiliar terms (P1, P4, P5) to unfamiliar categories of approaches (e.g., “Not sure what ‘Gauss–
Newton approach for solving constrained optimization’ is”—P6), or high-level research directions
(e.g., “this is different from my research direction, people who work on this direction might find it
interesting, though”—P1), participants saw the diversity of results as a challenge for engagement.
P1 pointed out a perceived gap between the expectation of least effort and the cognitive processing
required when engaging with analogical ideas and adapting them:

“As I understand it, I think this search engine is trying to present articles from related but
different fields to let people make connections. But people expect less friction. (The result
is) something interesting but I can’t directly write it into a project proposal. . . I think it
would be challenging to make people get interested in investing time to read the articles
in depth to come up with connections. I wonder what would happen if this was hosted just
as an online website (instead of the study context)”—P1

On the other hand, analogs that did get examined more deeply could ultimately lead to creative
adaptation. For example, P3 mapped task scheduling among computer processes to task assign-
ment among the nuclear power plant operators, and came up with an idea to adapt algorithmic
scheduling used in real-time distributed systems to a scheduling mechanism that could be useful
in her research context. Represented symbolically this process was akin to ideating what might
best fill in the “?” in the relational structure [scheduling algorithm:processes in distributed sys-
tems]↔ [?:nuclear power plant operators]: “I think the algorithms proposed in this article could
be useful for calculating the operator task execution time, the power plant system’s response time,
and the time margin between the execution time and the system response time. . . so that the next
task assignment can factor in these margins and things related to workers’ well-being like rest and
time required between switching tasks” (P3).
Participants seemed to recognize a small number of core relations as kernel for creative adap-

tation. In the example of P3, scheduling processes in the distributed systems article piqued her in-
terest and led her to connect them with similar concepts in the literature she was already familiar
with: “You need to make that connection. . . I saw parallels between (distributed systems domain)
concepts like [scheduling] and [tasks] and [scheduling tasks for the operators]” (P3). Similarly,
P5 recognized a similarity between [monitoring people’s performance] in fitness training and
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Fig. 13. Diagram showing different abstraction levels of purposes and their relations. Node A© corresponds
to a more specific query than its higher-level representation, denoted as B©. Similarly, node C© represents a
more specific purpose representation of A©, accessible via the A© →

abstraction
B© →

specification
C© path.

[monitoring whether construction workers are wearing personal protective equipment] in con-
struction sites. He then adapted the idea of tracking heat emission in the fitness context to his
own: “I like the idea of [monitoring heat emissions] in fitness training. . . maybe I can also detect
heat emissions from construction workers to see if they are wearing the safety vests or masks
while also monitoring the site conditions and worker efficiency. It also gives me an idea to moni-
tor the CO2 emissions from workers so as to improve the robustness of detection” (P5). In this case,
monitoring and the physical nature of the activities involved helped P5 see the connection useful
for creatively adapting the source idea.

5.2.3 “I don’t Know What to Type in”: The Challenge of Query (Re-)Formulation. Another chal-
lenge participants faced was that they were not used to formulating their search queries in terms of
high level purposes of their research. On average participants entered 5.2 queries (Min: 1, Max: 18,
SD: 5.87), 87% (27) of whichwere in the form of a single noun phrase (e.g., “heat pipe evaporation,”—
P1, “task complexity”—P3, “theoretical optimization convergence for non-convex functions”—P6)
or a comma-separated set of multiple noun phrases (e.g., “heat transfer, nanoscale, fluid”—P2) that
represented specific aspects related to research purposes rather than the core purposes themselves.
For example, the purpose of “heat pipe evaporation” may be to transfer heat, and the purpose of
searching for “theoretical optimization convergence for. . .” may be to detect when optimization
converges or diverges, or to effectively sample unknown (non-convex) distributions.
One of the reasons why participants formulated search queries in this way may be wrongly

assuming that the search engine used keyword matching to find results. For example, extensive
prior experience with search engines that highlight matching keywords in abstracts (e.g., Google
Scholar) in response to users’ search queries can reinforce such assumptions among the users. In
addition, participants’ domain knowledge useful for judging which of the returned articles are
relevant may have led them to notice a set of keywords the inclusion of which strongly signifies
the relevance of a article. In contrast, the analogical search results often seemed to not feature such
directly similar terms and this contributed to the difficulty of judging whether a result is relevant
and how: “I find these articles not very related to my search query at first. It’d be better if you can
use some graph or some pictures to indicate how these articles can relate to my keywords” (P5);
“I’d not consider. . . (because) they are totally different, right? They look irrelevant. . . until I think
about it I can realize that it’s useful. But if you give me the article, at first I don’t realize that” (P3).
While it may not feel as compelling or natural to participants, formulating and abstracting

queries at a high level may lead to searching more distant results that are analogous at a higher
level. For example, by querying “detect personal protective equipment” instead of “personal

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 57. Publication date: November 2022.



Augmenting Scientific Creativity with an Analogical Search Engine 57:25

protective equipment construction,” P5 found novel mechanisms of detection, such as general im-
age segmentation algorithms or an approach to monitoring heat in the context of fitness training
not specific to construction sites and personal protective equipment but nonetheless useful for
creative adaptation. Querying “scheduling tasks” instead of “task complexity” for P3 resulted in
finding scheduling algorithms in distributed computer systems that otherwise P3 would not have
encountered, while “assigning tasks” led to novel auctionmechanismswhichmade her think about
a system in which each power plant operator can bid for a task as opposed to being assigned one.
Schematically, Figure 13 shows how formulating queries at a higher level of abstraction than spec-
ifying the problem context in full details (A©→ B©) may lead to discovering novel mechanisms that
are relevant at the high level of abstraction, and in more distant ways from the original problem
formulation ( B©→ C©).
6 DESIGN IMPLICATIONS

From both the case studies’ and Study 1’s participants’ reflection on the challenges of interacting
with analogical search results, common themes emerged. Here, we present three design implica-
tions for future analogical search systems synthesized from these results. We use subscripts to
denote which study participants participated in when appropriate.

6.1 Support Purpose Representation at Different Levels of Abstraction

Analogical search engines should support users to formulate their purpose queries at different
levels of abstraction. Additionally the search engine may prompt users to consider abstracting or
specifying their purpose queries in the first place, and explain how it might help bring new in-
sights into their problems. As seen in the case studies (Section 5.2.3), scientists recognized their
purpose queries may be represented at multiple levels, but prior experiences with similarity maxi-
mizing search engines may also have anchored them around pre-existing rigid formulation of pur-
poses. Prompting users to consider their research problems at multiple levels may work against
this rigidity, and providing candidate suggestions at varying levels may further reduce the cog-
nitive demand. Moving up on the hierarchy to abstract purpose queries may be possible through
removing parts of the query words that correspond to specific constraints, or by replacing them
with more general descriptions. For example two participants of Study 1 had an identical purpose
representation at a high level (“facilitate heat transfer”) despite the differences in materialistic
phases targeted in each purpose: solid material and semiconductors for P1Study 1 and liquid thin
films for P3Study 1.
Furthermore, we also observed that looking for only the exact match of a purpose can lead to

missed opportunities. For example, although “fins represent a different idea for transferring the
heat” and “they (fins) don’t match in terms of the scale—macro, not nano,” it nevertheless made
P1Study 1 wonder “what if we could design nanoscale wall structures that act like fins that convert
heat to mechanical energy?” A corollary to this observation is that sometimes the superpositions
of misalignment with just the right amount can lead to interesting results. For P4Study 1, an ar-
ticle presenting experimental techniques for piezoelectric properties was interesting despite its
misalignment such as [simulation-based] (source)� [experimental] (analog) and [dielectric prop-
erties] (source)� [piezoelectric properties] (analog): “Though it’s an experimental study, it’s very
close in terms of the material and phenomenon so likely to be helpful. Because we might be able to
pick up some trends like, if we increased the temperature, the dielectric response gets stronger or
weaker, inferred from the experimental piezoelectric responses, which can then be used to corrob-
orate simulation results or help configure its parameters” (P4Study 1). However, too much deviation
seemed detrimental to its potential for inspiration: “[Molecular dynamic simulation] is the same
tool, but (this article studies) [thermal] (not [dielectric]) properties on [polymer composites]. . .
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[polymer composites] are harder to model” (P4Study 1). In sum, analogical search engines should
support not only the capability to “narrow it down” with specific constraints, but also ways to re-
lax them to broaden the search space when suitable, thus making feasible the sweet spot between
too little (i.e., similarity maximization and trivial matches) and too much deviation (i.e., critical
misalignment and unusable analogs).

6.2 Support Iterative Steering from Critical Misalignment and Towards

Generative Misalignment

Analogical search engines should recognize that important constraints may be discovered by users
only after seeingmisaligned analogs, and support this discovery process by presenting effective ex-
amples of misalignment to users. Analogs that deviate on some aspects of the source problem but
preserve important relations may be particularly conducive to analogical inspiration that opens
up not just individual solutions, but entirely new domains of solutions. However, at the same
time scientists also found it challenging to know how to come up with effective search queries
because combinations of misalignment can sometimes lead to an unintended intersection of do-
mains: “I feel like I’m tricking the machine because [thin film] is often used with [solids], and the
term [pressure] also appears a lot in [manufacturing]. . . so combining them gives a subset of arti-
cles concerned with heat transfer in solid materials and in manufacturing” (P3Study 1); “on Google
Scholar also, I get a lot of polymer strings and get (irrelevant) results like we use an [electric] device
to study [vibration and stress] of [polymers]. . . the machine is picking up [electric] and [properties]
such as vibration and stress in the context of studying polymers but what I really want is [electric
properties] of [polymers] not [electronic devices] to study the [mechanical properties] of [poly-
mers]” (P4Study 1). Nonetheless, seeing misaligned analogs can be an effective way of reasoning
about salient constraints and reflecting on hidden assumptions. For example, while evaluating arti-
cles about designing microelectrode arrays, P6Study 1 said: “Now I think about this (result), I assumed
a lot of things when typing that search query. . . though impedance and topology are my main focus
in microelectrode arrays, the coating, size, interface between a cell membrane and electrodes/sensors,
biocompatibility, softness of electrodes, fabrication process, material of the platform: silicon or poly-
mer or graphene, form factor: attaching electrodes to a shank-like structure or a broom-like structure,
degree of invasiveness, are all part of the possible areas of research and it makes sense that they showed
up—there is no way the machine would have known that from my query.” This excerpt illustrates
how knowing what the necessary specifications are and which constraints need to be abstracted
to cast a wide-enough net to catch interesting ideas appeared to be a difficult task for scientists,
especially when they had to recall important attributes rather than simply recognize them from ex-
amples of misalignment. Prior work in cognitive sciences also shows how dissimilarity associated
with various factors in analogical mappings [45] can pressure working memory [111], increase
cognitive load [102], and increase response time taken to produce correct mappings for analogy
problems [71]. Therefore, analogical search engines should help to reduce the cognitive effort re-
quired in the process, for example by proactively retrieving results that are “usefully” misaligned
such that searchers can better recognize (as opposed to having to recall) salient constraints and re-
fine their problem representation. This process is deeply exploratory [93, 114, 117] in nature, and
suggest the importance of both providing end-users a sense of progress over time [103] as well
as adequate feedback mechanisms for the machine to adjust according to the changing end-user
search intent [72, 95, 96]. For example, while the machine may “correctly” recognize a significant
anaogical relevance at a higher level of purpose representation and recommendmacro-scale mech-
anisms to a scientist who studies nano-scale phenomena (P1Study 1) or solid and semiconductor-
based cooling mechanisms to a scientist in liquid and evaporative cooling systems (P3Study 1), these

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 57. Publication date: November 2022.



Augmenting Scientific Creativity with an Analogical Search Engine 57:27

analogs may be critically misaligned on the specific constraints of the problem (i.e., the scale or
materialistic phase) and thus considered by end-users as useless and even harmful.

6.3 Support Reflection and Explanation of Analogical Relevance

Throughout the process of analogical search, human-AI coordination is critical for success, and
an important aspect is how deeply the human users can reflect on the retrieved analogs [53] and
recognize how different notions of relevance may exist for their own problem context, despite po-
tential dissimilarity on the surface. Looking at previous examples of the tools and techniques de-
veloped for targeted reflection support may be useful to this end. For example, ImageCascade [76]
provides intelligent support such as automatically generated mood-boards and semantic labels for
groups of images to help designers communicate their design intent to others. Another system,
Card Mapper, visualizes relative co-occurrences of design concepts using proximity in the design
space [26]. Similarly representing the space of analogical ideas using spatial encoding of similarity
between two analogs, or designing information that supports getting a sense of the space of search
results—e.g., semantic category labels similar to ImageCascade’s or the distribution of the domains
that analogs are pulled from—may be an avenue for fruitful future research. The explanation of
relevance is also important especially when there is a risk of early rejection (Section 5.2.2). Using
examples from the case studies, one approach to explaining relevance might be to surface a small
number of core common features between an analog and a problem query. Such common features
were considered useful by scientists for making analogical connections, and they could creatively
adapt them for their own research problem context. When common features are not directly re-
trieved, generation of more elaborate explanations may be required. We refer to [6, 14, 70, 98] for
those interested in future design considerations of automatically generated recommendation expla-
nation. Further complementing the direct explanation of relevance approach, techniques such as
prompting or reminding the searchers of previously rejected or overlooked ideas may also trigger
deeper reflection and delay premature rejection of the ideas based solely on their surface dissim-
ilarity. Participants from both studies commented that the critical first step towards analogical
inspiration may be raising similarly enough attention and interest above the initial “hump” of cog-
nitive demand. Gentle reminders (e.g., “Ask me later if this would be interesting and also provide a
list of items”—P1Case Studies) or resurfacing previously rejected articles in light of new information
(P1Case Studies, P3Case Studies) may help with users cross this barrier.

7 DISCUSSION

7.1 Summary of Contribution

With the exponential growth of research output and the deepening specialization within different
fields, encouraging analogical inspiration for scientific innovation that connects distant domains
becomes ever more challenging. Our human-in-the-loop and fully automated analogical search en-
gines represent an approach for supporting such analogical inspirations for challenging scientific
problems.We have demonstrated in Study 1 that our human-in-the-loop system finds novel results
that participants would be unlikely to encounter from keyword-based search, and that these results
lead to high levels of creative adaptation. Through a mediation analysis we also showed that this
success was driven by the analogical search engine’s ability to find partial purpose matches (e.g.,
matching at the high-level purpose but differs at the low-level details). We saw the nuanced effects
of partial purpose alignment on the results’ goodness as analogs for inspiration. Through quali-
tative observations, we described how certain attributes of analogical mapping were perceived as
more salient by participants, and that mismatches on them can have either a positive (i.e., genera-
tive insights) or a negative impact (i.e., critical misalignment) on creative adaptation. In contrast,
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keyword-based search resulted in more full purpose matches and a higher level of direct applica-
tion. The value of keyword-based search and analogy-based search thus may complement each
other, while keyword-based search can help researchers find “exactly that”, analogy-based search
can help researchers to switch from a preservative mode (i.e., aiming to find results with maximal
similarity to the query) to a generative mode (i.e., aiming to find analogs that are relevant despite
the surface dissimilarity) of searching, and ultimately lead them to recognize unusual relations and
come up with ways to creatively adapt existing ideas for novel domains.
We also demonstrated how improving the Seq2Seq purpose andmechanism identificationmodel

can remove the human-in-the-loop but maintain a similar level of accuracy on purpose-match by
human judges. This improvement enabled us to develop a fully automated analogical search sys-
tem to use as a probe to study searchers’ more natural interaction with analogical results. Through
a series of evaluation we first show that our automated analogical search pipeline can emulate hu-
man judgment of purpose match and that it finds partial purpose matches in top ranked results
with a similar rate compared to the human-in-the-loop system used in Study 1. Then through case
studies we find generalizable challenges that future analogical search engines may face, such as
early rejection of alternative mechanism ideas and the difficulty of abstracting and representing
purposes at the right level. From our studies we synthesize design implications for future analog-
ical search engines, such as supporting purpose representations at different levels of abstraction,
supporting the iterative process of steering away from critically misaligned analogs and towards
a fertile land of generative misalignment, and providing explanations on why certain analogical
search results may be relevant. We envision that future studies will shed light on deeper cognitive
sources of the challenges identified here. A fruitful avenue of research may be studying how the
dual processing theory [69, 112] underlies or interacts with analogical search interaction. Studying
also how simplification heuristics [84] may negatively bias interaction with analogical results and
how it may be reduced for expert user populations may be an interesting future direction [17, 77].

7.2 Limitations and Future Work

7.2.1 Experimental Design and Improving its Validity. Our findings have several limitations.
First the design of our studies may be improved to increase the experimental validity. We believe
that our coders of the ideation outcomes had a reasonable understanding of participants’ research
context from descriptions of current and past research topics, think-alouds with 45 articles, and
end-of-experiment discussions, and that the procedure of coding reduced potential biases (e.g., the
coders were blind to experimental conditions, relied on participants’ statements of novelty and
distance). Despite this, it is possible that they judged ideas differently from domain experts, for
example coding more or fewer ideas as creative adaptation, or pre-filtering useful ideas in the
human-in-the-loop stage. In addition, other quality dimensions such as potential for impact or
domain-expert-judged idea quality are largely inaccessible within the studies presented here. Fu-
ture research may improve on these limitations by iterating on the experimental design, collecting
data for triangulating the results and capturing other quality dimensions of the generated ideas.
Additionally, future work may add ablation studies to quantify the effects of human filtering in

Study 1 on the ideation outcome as well as sensitivity studies to relate how much the increased
token-level classification performance of trained models may reduce the burden of human filter-
ing. Furthermore, additional experiments with baselines other than keyword-based search using
the whole abstract will help pinpoint the potential advantages of representing and matching arti-
cles using extracted purposes and mechanisms. For example, Chan et al. [21] found that embed-
ding all words from an abstract (using GloVe embeddings) resulted in retrieval of fewer analogi-
cal items than when extracted purposes and mechanisms were used. Replicating this result with
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additional approaches such as contextualized word embeddings and pre-trained language models
(e.g., ELMo [90], BERT [29], and SciBERT [7]) will be valuable.

7.2.2 Potential Sampling Bias. The sampling strategy in Study 1 was purposefully unbalanced,
where analogical articles were sampled twice as much as keyword articles to ensure participants’
exposure to sufficiently diverse results. This was crucial for uncovering potential benefits and
challenges of our analogical search engine and investigating its viability. This ratio was chosen
purposefully, to balance the statistical power for detecting potentially significant differences be-
tween the conditions, while also limiting the number of articles that each participant had to review.
Given the cognitive burden of reviewing an article while thinking aloud, we decided on 45 in total
with the 2:1 ratio to fit the practical time limits of interviews. However, this may have led to unan-
ticipated effects on ideation outcomes despite having accounted for the difference in sample sizes
by measuring the outcomes in ratios. For example, when the results were combined into a single
blinded list, the over-representation of analogical results over more purpose-aligned keyword re-
sults may have shifted the users’ overall perceived value of the list to bemore or less positive. Users’
perception of diverse results may have been further affected by their relative over-representation.
For example, increased cognitive load for processing analogical mapping [51, 52, 102] may suggest
that results that fully match on the purpose search query may have been perceived even more
favorably than analogical results, due to a negative spill over effect from the rest of the articles in
the list, which were less likely matched on the purpose. Investigating whether such factors led to
compounding effects beyond our ratio-based measures of usefulness remains an open question for
future work.

7.2.3 Controlling the Diversity of Search Results. Our work is also limited by the lack of con-
trollability in sampling the search results beyond purpose similarity. As described in Section 2.2.1,
from pilot tests in our corpus we discovered that even close purpose matches of scientific articles
already had high variance in terms of the mechanisms they proposed which allowed us to focus
our approach to sampling based solely on purpose similarity. The simplicity of this approach also
means fewer hyper parameters in the sampling mechanism compared to other approaches [61, 62].
However, all the approaches including this work thus far lacked a mechanism for explicitly con-
trolling the diversity in retrieved search results which remains a fruitful avenue for future work.
For example, prior research has uncovered the nuanced effects of distance (e.g., near vs. far sources
of inspiration [24, 97]), suggesting the benefit of targeting analogs at different distance from the
source problem for the right context. Future research may also uncover further complexities in the
relationship between novelty and purpose-match. The result of our mediation analysis (Table 5)
showed that the novelty of content among the search results in Study 1 was not a significant factor
to the same extent that the three levels of purpose match was. However, the relationship between
novelty and purpose match may be more complex than the levels of manipulation presented in this
work. For example, [30] suggested a greater importance of novelty than usefulness for predicting
creativity scores. Future work may design mechanisms to manipulate the variance in content nov-
elty and alignment in the purpose-mechanism schema to uncover dynamics between the two that
go beyond the results from mediation analyses presented here (Section 3.3.3). Furthermore, chal-
lenges with the abstraction of purposes remain open, for example, how core versus peripheral at-
tributes of research purposes may be identified, and how they may be selectively matched at a spe-
cific level of the conceptual hierarchy. Finally, not all query formulations are created equal in terms
of their suitability for analogical search. We observed in the case studies that participants wanted
to express different query intent via reformulation (Section 5.2.3). While participants could refor-
mulate their search queries and examine the returned results from our analogical search engine in
real-time, it was unclear whether and how specific query formulations may lead to more or less
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diverse results, and how subsequent queries may be updated after reviewing them. As such, sys-
tems that assist users in the potentially tedious process of query reformulation [113] (for example,
by way of automatic query expansion [18]) in the context of analogical search will be important.

7.2.4 Studying the Effect of Larger Context of Scientific Innovation on Analogical Innovation. Due
to our focus on ideation outcomes, our results do not explain how these ideas may be integrated,
developed, and shared across the research communities. Studying the lifetime of ideas that goes
beyond their inceptionwill deepen our understanding of the factors that currentlymake analogical
innovation such a rare event in sciences (for example, Hofstra et al. suggested that more seman-
tically distant conceptual combinations receive far less uptake [58]). Through interviewing our
study participants and other colleagues in academia we found emerging structures related to this
challenge. Our interviews informed us that in general the context in which a scientist exists—such
as the scientist’s role in a project, the maturity of a project, and the broader academic culture—can
ultimately change how they interact with and seek analogical inspirations. For example, a third-
year PhD student studying chemical engineering commented “In the current stage of my project
it’s more about parameter-tuning—running multiple experiments at once and comparing which
configuration works the best. . . If I were a first year PhD student maybe I would be in a broader
field and exploration.” In contrast, a PhD in biology who recently defended noted that “analogical
inspirations would perhaps be more useful if you’re looking for a postdoc or a faculty position.”
In addition, the underlying career incentive structures in academia may also affect researchers’

perception of and openness to analogical inspirations. One of the study participants commented
“since I’m already a third year PhD student and my project is further along and more firmed up,
I’m not really looking for really far inspirations. . . first we push the specific way we have in mind
with many iterations on the experiments until, say, publication.” In addition to the career-wise
incentives there are other types of competitive resourcefulness (e.g., social resources such as the
advisors’ and colleagues’ expertise that participants can easily tap into; physical and other forms of
resources such as tangible artifacts like previously developed code packages or experimental pro-
cesses and setups). These factors can influence scientists’ perception of their advantage and lead
them to interpret analogical inspirations as more or less useful, feasible, and directly applicable to
their research. This observation is further suggested by survey results that asked our participants:
“Could this article be useful to you?,” their ratings were significantly higher for keyword articles
than analogy articles despite them having come up with creative adaptation ideas more often with
analogy articles. Therefore, future work that studies incentive structures, the quality of ideation
outcome, their feasibility, the differences in research context e.g., frames of research contribution
such as discovery-oriented vs. novel system development-oriented, and taking a longitudinal ob-
servation of the variation in such factors will add a significant depth to our understanding.

8 CONCLUSION

In this article we present our novel human-in-the-loop and fully automated analogical search en-
gines for scientific articles. Through a series of evaluations, we found that analogous articles that
our systems retrieved were novel and useful for sparking creative adaptation ideas. However, sig-
nificant work is needed to continue this trajectory, including additional understanding of the con-
text and incentives of scientists as well as advances in the data pipeline and interaction methods
beyond those described here for a system to maximize its real-world impact.
We imagine a future in which scholars and designers could find inspirations based on deep

analogical similarity that can drive innovation across fields. We hope this work will encourage sci-
entists, designers, and system builders to collaborate across disciplinary boundaries to accelerate
the rate of scientific innovation.
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APPENDIX

A REPRODUCIBILITY

Training and validation datasets. The original annotation dataset from [21] also includes Back-
ground and Findings annotations which we exclude due to their relatively high confusion rates
among the annotators with the Purpose and Mechanism classes and to balance the number of
available training examples per annotation class.

Model parameter selection.We experimented with changing the model capacity relative to the
signal present in the training dataset by tuning the number of hidden layers and the nodes used in
each model architecture. For Model 1, we found a hidden layer of 100 nodes was sufficient. We opti-
mized this model using the cross-entropy loss and the Adam optimizer [73] with a 0.0001 learning
rate. For Model 2, we found three hidden layers with 256 nodes led to an improved accuracy on
the validation set. We trained this model with an L2 regularizer (α = 0.01), dropouts with the rate
of 0.3, and the Adam optimizer with a 0.001 learning rate.

Span-based model architecture. We adapt SpanRel [67] as architecture for the span-based
Model 2. SpanRel combines the boundary representation (BiLSTM) and the content representa-
tionwith a self-attentionmechanism for finding the core words. More specifically, given a sentence
x = [e1, e2, . . . , en], of n token embeddings, a span si = [ωsi ,ωsi+1, . . . ,ωfi ] is a concatenation of
the content representation zi c (weighted average across all token embeddings in the span; SelfAttn)
and the boundary representation zib of the start (si ) and end positions (fi ) of the span:

u1,u2, . . . ,un = BiLSTM(e1,e2, . . . ,en ),

zci = SelfAttn(esi ,esi+1, . . . ,efi ),

zbi = [usi ;ufi ],

zi = [zci ;z
b
i ].

We use the contextualized ELMo 5.5B embeddings15 for token representation, following the near
state-of-the-art performance reported on the named entity recognition task on the Wet Lab Proto-
col dataset in [67]. We refer to [67, 79] for further details.

Other parameters. We use GloVe vectors for input feature representation for Model 1 with 300
dimensions, consistent with the prior work [11, 78, 88]. For Model 2, we use the contextualized
ELMo 5.5B embeddings as described above which have pre-determined 1,024 dimensions. We use
USE [20] for encoding purposes. A USE embedding vector has pre-determined 512 dimensions.
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