
50 Ways to Bake a Cookie: Mapping the Landscape of
Procedural Texts

Moran Mizrahi

The Hebrew University of Jerusalem

Jerusalem, Israel

moranmiz@cs.huji.ac.il

Dafna Shahaf

The Hebrew University of Jerusalem

Jerusalem, Israel

dshahaf@cs.huji.ac.il

ABSTRACT

The web is full of guidance on a wide variety of tasks, from chang-

ing the oil in your car to baking an apple pie. However, as content

is created independently, a single task could have thousands of

corresponding procedural texts. This makes it difficult for users to

view the bigger picture and understand the multiple ways the task

could be accomplished. In this work we propose an unsupervised

learning approach for summarizing multiple procedural texts

into an intuitive graph representation, allowing users to easily ex-

plore commonalities and differences. We demonstrate our approach

on recipes, a prominent example of procedural texts. User studies

show that our representation is intuitive and coherent and that

it has the potential to help users with several sensemaking tasks,

including adapting recipes for a novice cook and finding creative

ways to spice up a dish.

CCS CONCEPTS

• Information systems→ Summarization; Personalization; •Com-

puting methodologies→ Information extraction.

KEYWORDS

Procedural texts; Multi-document summarization; Sensemaking;

Cooking recipes

ACM Reference Format:

Moran Mizrahi and Dafna Shahaf. 2021. 50 Ways to Bake a Cookie: Map-

ping the Landscape of Procedural Texts. In Proceedings of the 30th ACM
International Conference on Information and Knowledge Management (CIKM
’21), November 1–5, 2021, Virtual Event, QLD, Australia. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3459637.3482405

1 INTRODUCTION

Procedural texts play an important part in our lives: recipes, how-

to instructions, scientific procedures, navigating directions and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00

https://doi.org/10.1145/3459637.3482405

manuals are only a few common examples. The web includes pro-

cedural texts on a variety of topics, from recipe websites
1
to Maker

websites
2
and general how-to websites

3
.

However, a single task might have thousands of corresponding

procedural texts. This is both due to variations (for example, dif-

ferent recipes for the same dish) and due to the distributed nature

of the web, where content is created independently by people who

do not communicate. Thus, looking at one (or a few) procedural

texts only gives the reader a limited view of the possibilities. Con-

sequently, when people try to determine the best choice for them

given preferences (e.g., taste) and constraints (budget, time, items

they do or do not have), they often resort to extensive browsing

and comparisons between different texts to get the bigger picture.

Automatic understanding of procedural texts is a difficult prob-

lem, requiring capturing the interplay between entities, attributes

and their dynamic transitions. There has been a recent surge in

work in understanding procedural texts [1, 6, 16, 26, 41, 55] and

in visualizing procedural texts as graphs [9, 29, 30, 34, 43, 46, 62].

However, these works focus exclusively on analyzing a single pro-
cedural text. In contrast, our goal in this paper is to automatically

summarize and organize many texts sharing the same goal,

allowing users to explore commonalities and differences between
texts at a glance. We envision a system that will guide the user

in finding a way to complete the task that best fits their prefer-
ences or constraints. Importantly, the chosen alternative could be a

modification or combination of the original texts.

We focus on recipes, a prominent example of procedural texts.

We build a system taking as input multiple recipes for the same dish.

The output is an intuitive graph representation, mapping the entire

landscape of variations. See Figure 1 for a summary of ∼ 200 apple-

cake recipes. A node in the graph corresponds to a set of similar

actions, and a directed path represents a way to make the dish.

Alternative paths indicate different approaches, such as creaming

butter and sugar before adding the other ingredients (bottom path)

or mixing them all in a single step (middle path). The graph makes it

easy to identify common ingredients (flour, apples, baking powder,

sugar and eggs) and techniques, as well as anomalies that could

potentially spark innovative ideas, such as using yogurt, allspice or

zucchini, or using a microwave to bake the cake instead of an oven.

We believe such a representation could be especially useful to

users who want to adjust a recipe to meet specific preferences or

needs; to novice cooks looking to avoid rookie mistakes (e.g., many

recipes do not explicitly mention the need to rinse grains or let the

1
allrecipes.com, epicurious.com

2
https://www.instructables.com

3
Wikihow.com, eHow.com

ar
X

iv
:2

21
0.

17
23

5v
1

 [
cs

.C
L

]
 3

1
O

ct
 2

02
2

https://doi.org/10.1145/3459637.3482405
https://doi.org/10.1145/3459637.3482405
www.allrecipes.com
www.epicurious.com
https://www.instructables.com/
www.Wikihow.com
www.eHow.com

Figure 1: Summary graph for apple cake recipes. Each node represents a cluster of similar instructions. Darker nodes indicate

larger clusters; thicker edges indicate strong connections. Paths correspond to execution plans. Nodes show a compressed

summary of their instructions: main cluster verb and its most frequent ingredients. The “beat” node is clicked on, showing a

full summary, including ingredient quantity ranges, cooking instruments and preparation time range. Next to the “beat” node

is a sample of its associated instructions. On the left is a list of the least common ingredients. Clicking on an ingredient that

does not appear in the graph reveals hidden paths with this ingredient (in blue).

meat rest); and to anyone looking for new ideas for spicing up a

familiar dish. Our contributions are:

• We propose a novel approach for summarizing procedural

texts sharing a goal into an intuitive graph representation.

• We demonstrate our approach on cooking recipes. We de-

vise an unsupervised recipe parser, taking into account the

unique structure of recipes. We believe the principles behind

the parser could be generalized to other domain-specific

parsers for procedural texts. We then propose a general-

purpose algorithm for constructing the summarization graph.

• Weassess the quality of our pipeline’s individual components

and conduct a user study to evaluate our representation in

terms of intuitiveness (can users understand it with no ex-

planation?), coherence (do paths correspond to recipes?) and

utility (can it help users performing sensemaking
4
tasks?).

User studies demonstrate that our representation is intu-

itive and coherent. Evaluation by cooking experts shows the

graph users perform better than users of a baseline interface

at several sensemaking tasks, including adapting recipes for

novice users and finding creative ingredients.

• We release open-source code at https://github.com/moranmiz

/50-Ways-to-Bake-a-Cookie.

We believe that our representation could serve as foundation for

future systems that digest a large set of procedural texts. We are

particularly excited by the potential of such system to synthesize
new procedures, rather than simply recommend existing ones.

4
Sensemaking [50] is the task of constructing a mental representation of interrelated

pieces of information, often in the context of understanding large document collections.

2 PROBLEM DEFINITION

Given a large set of procedural texts sharing the same goal, we

wish to summarize these texts in a way that will help users view

the big picture. In particular, we want to find a representation that

will (1) allow the user to explore commonalities and differences

between the ways to complete the task, (2) make it easy for the

user to choose a way to complete the task, satisfying personal

preferences or constraints. Importantly, the chosen way need

not be one of the original procedural texts, but rather could be a

modification (or combination) of the original texts. More formally,

Definition 1 (Summary Graph). Let S be a set of procedural
texts sharing the same goal. Each 𝑠 ∈ S is a pair (𝑂𝑠 , 𝐼𝑠), where 𝐼𝑠
is a sequence of instructions, and 𝑂𝑠 is a set of objects needed to
carry out the instructions. Our goal is to construct a summary graph

𝐺S = (𝑉 , 𝐸). Each node in𝑉 represents a set of (semantically similar)
instructions fromS. There are also two special nodes, START and END.
Directed paths from START to END represent ways toward achieving
the goal. Nodes are weighted and labeled; edges are weighted.

Figure 1 shows an example for summary graph, summarizing

∼ 200 apple-cake recipes. To facilitate exploration, we provide

several visual cues: dark nodes contain more instructions, and thick

edges represent strong connections between the nodes. Nodes could

contain hundreds of instructions, and thus we need to summarize

their contents for the visualization. For recipes, we specify the

action (e.g., “mix”, “bake”) along with a statistical summary of the

ingredients, tools, and execution time-range. Left click on a node

reveals quantities (see “beat” node); right click shows its actual

(natural-language) instructions (see a sample near “beat”).

The graph representation gives a general overview that allows

users to explore different ways to bake a cake and better understand

https://github.com/moranmiz/50-Ways-to-Bake-a-Cookie
https://github.com/moranmiz/50-Ways-to-Bake-a-Cookie

Figure 2: A scheme demonstrating our general approach to constructing the summarization graph. The stages are: gathering

data, parsing it, clustering instructions based on predefined similarity measure, constructing the graph and visualizing it.

the process. For example, consider the highlighted “beat” node.

Looking at this node, one could deduce that butter, appearing in

53.3% of the instructions, is more popular than shortening or oil,

that this step could use a mixer and only takes a few minutes. The

thick edge from node “bake” to node “cool” indicates that cooling

the cake after baking it is crucial. Alternative paths indicate different

approaches, such as creaming butter and sugar before adding the

other ingredients (bottom path) or mixing them all in a single step

(middle path).

The graph interface also makes it easy to identify anomalies

that could potentially spark innovative ideas. Expanding the “bake”

node, we observe it is possible to bake a cake using a microwave.
5

The rare ingredient list includes ingredients such as allspice and

even zucchini (interestingly, the rarest ingredient is yeast; upon

further examination, we realized that the vast majority of cake

recipes are indeed risen by baking soda/powder
6
).

3 IMPLEMENTATION

Before diving into the details, we give a general overview of our

approach towards constructing the summary graph, illustrated in

Figure 2. First, we gather data of procedural texts sharing the same

goal. Second, we parse the data using our unsupervised parser.

Then, we take advantage of the structure extracted by our parser to

define a similarity measure between instructions and cluster similar

instructions. These clusters constitute the graph’s nodes. Next, we

connect nodes so that every path corresponds to an execution plan.

As the resulting graph might be noisy and too large to visualize ef-

fectively, we prune it, reducing noise in the process. Note that while

the first three steps in the scheme (gathering data, parsing, similar-

ity) are task-dependent, the final step is general. Code is available

at https://github.com/moranmiz/50-Ways-to-Bake-a-Cookie.

4 DATA COLLECTION

We gather data of procedural texts sharing the same goal. For

recipes, we crawled Allrecipes.com for 18,976 recipes of 98 popu-

lar dishes. The average number of ingredients per recipe is 10.11

5
https://tinyurl.com/apple-mug-cake

6
https://tinyurl.com/yeast-leavened-cake

(std=4.09). The average number of instructions per recipe is 3.86

(std=1.865) before tokenization, and 12.65 (std=6.65) after tokeniza-

tion (see Section 5.1). The average number of words per recipe

is 162.01 (std=76.13). Considering instructions only, the average

number of words is 116.33 (std=64.7). The vocabulary size is 9322.

In Section 5.2.2, we construct a word2vecmodel on recipe instruc-

tions. For this step, we also use the instructions of 97,862 recipes

from "Now You’re Cooking!"
7
. The average length of a recipe in this

dataset (considering instructions only) is 63.45 words (std=46.13).

The vocabulary size of this additional dataset is 44,601.

5 MODEL

5.1 Unsupervised parser

Referring back to Definition 1, in our use case S is a set of cooking
recipes for the same dish. Each recipe 𝑠 ∈ S is a pair (𝑂𝑠 , 𝐼𝑠), where
𝑂𝑠 is a set of ingredient objects, and 𝐼𝑠 is a sequence of instructions.
We define an ingredient object 𝑜 ∈ 𝑂𝑠 as a tuple consisting of the

ingredient’s quantity, quantity unit and name. An instruction object

𝑖 ∈ 𝐼𝑠 consists of the instruction’s main verb (e.g. “mix” for “mix all

the ingredients”), sets of ingredient objects and instrument names

that appear in the instruction, and an instruction’s time range tuple

(indicating minimal and maximal duration).

We want to parse natural-language recipes into our represen-

tation and use the structure to compare instructions. We have ex-

perimented with off-the-shelf parsers, including open-IE [53] and

UDPipe [54]. However, recipe data has several unique character-

istics and challenges, and thus we decided to implement our own

parser.

One prominent challenge is that in recipes, the same ingredient

is often referred to in multiple forms. For example, the ingredient

list might mention specific ingredients as “ground nutmeg” and

“cinnamon”, but the instructions will refer to “spices” (generaliza-
tion). Similarly, the ingredient list might mention “Granny Smith

apples”, but the instructions will only mention “apples”. We refer

to that specific type of generalization as abbreviation.
Keeping track of abbreviations and generalizations has two im-

portant advantages: when parsing instructions such as “sift sugar

7
Data is available at http://www.ffts.com/recipes.htm.

https://github.com/moranmiz/50-Ways-to-Bake-a-Cookie
https://tinyurl.com/apple-mug-cake
https://tinyurl.com/yeast-leavened-cake
http://www.ffts.com/recipes.htm

Figure 3: Parser outputs for an apple-cake recipe. The upper

rectangle is an ingredient parsing output in which “ground

cinnamon” is the parsed ingredient and “spice” is its general-

ization. No abbreviation for “ground cinnamon” was explic-

itly found in text and thus the abbreviation is identical to

the parsed ingredient; The two rectangles below are instruc-
tion parsing outputs. In the upper one, the parser managed

to extract “cinnamon”, “clove” and “allspice” from “spices”.

and spices”, we can identify the implicit list of ingredients. When

comparing different recipes, we can better measure similarity be-

tween ingredients. For example, we can conclude that “vanilla” is

similar to “vanilla extract”, but “bread” and “bread crumbs” are

certainly different.

Thus, our parser implements two complementary tasks – ingre-

dient parsing and instruction parsing. We found it helpful to take

into account the full instruction text when parsing ingredient lines,

and the ingredient list when parsing instruction lines.

A note on generalization. Abbreviations and generalizations are

common in many procedural texts, from material science to make

and craft instructions. Hence, we believe similar methods could be

helpful when implementing other domain-specific parsers as well.

Ingredient parsing. Our ingredient-line parser first parses the

ingredient lines and tries to extract the ingredient name, quantity

and unit using regular expressions. In addition, the parser also looks

for abbreviations and generalizations in the text.

To derive an ingredient abbreviation we lemmatize the instruc-

tion text and search for the longest consecutive word sequence that

the ingredient name shares with the text. If there are several longest

sequences, we prefer one that ends with a noun (an ingredient’s

abbreviation is usually consecutive adjectives followed by a noun).

A failure to find an abbreviation is usually caused by a more

generalized description in the instructions (e.g., “spices” for “ground

cinnamon”). To derive a generalization of a missing ingredient, we

remove the already-found abbreviations. Then, for every noun in

the text (e.g., “spice”), we use WordNet [19] and check whether

“food” or “fruit” is one of its hypernyms. In this case, if the noun

is also a hypernym of the missing ingredient, we consider it the

ingredient’s generalization (see example outputs in Figure 3).

We note that the ratio of recipes containing a generalization in

our data is 8.56%, and that this ratio varies significantly among

different dishes (e.g., close to 0% for “deviled eggs” and around 38%

for “whole-grain bread”).

Instruction parsing. When parsing an instruction, we want to

extract its main verb, ingredients, tools and preparation time range.

For obtaining tools and preparation time we rely on regular ex-

pressions. To derive the main verb we build upon the coreNLP

parser [37]. Applied to the raw data, the coreNLP parser finds the

correct verb for only ∼ 75% of the sentences, perhaps due to the

imperative form (which is rare in training data). Thus, we concate-

nate the prefix “You should” to the instructions. If still no verb

is found by the parser, we look up verbs from a list of common

cooking verbs (the collection of all the verbs we managed to parse

before). As noted above, identifying the ingredients is done using

the extracted abbreviations and generalizations. Refer to Figure 3

for output examples.

Sentence tokenization. In the recipes of our dataset, one line in

the instructions often corresponds to multiple actions. We divide

these instructions into sub-instructions that are as concise and as

simple as possible. To do so, we first tokenize the raw instructions

using the coreNLP sentence tokenizer. Then, we break down com-

plex instructions consisting of several verbs, using the common

cooking verbs list found by our parser. For example, the instruction:

“Combine the water, 1/2 cup sugar and chocolate in a saucepan and

cook over low heat just until the chocolate melts” is divided into:

“Combine the water, 1/2 cup sugar, and chocolate in a saucepan”

and “cook over low heat just until the chocolate melts”. This last

step (breaking down complex instructions) affects 14.43% of the

instructions in the data.

Evaluation.We manually evaluated our unsupervised parser on

200 ingredient lines and 200 instruction lines, randomly selected.

For ingredients, the parser achieved accuracy of 93.5% for extract-

ing the ingredients, 95.5% and 97% for deriving abbreviations and

generalizations, and 100% and 99.5% for parsing amounts and units.

As for the instructions, our parser succeeded in extracting the right

verb for 93.5% of them, the instrument for 95.5% of them and the

time description for 100%. Moreover, it identified correctly 95.26%

of the ingredients appearing in them.

In comparison, open-IE [53] identified the right verb for only

76.5% of the instructions (failing to extract anything for 17% of

them). It was also very difficult to infer ingredients or tools from

the output (Representative outputs: [V: Mix] [ARGM-LOC: in onion

, cilantro , tomatoes] [ARG1: , and garlic] , [V: shortening][ARG1:

Cream] – for “Cream shortening”, [V: Add] [ARG1: the sugar and

vanilla and beat well]). On the other hand, UDPipe [54] found the

right verb for 82.5% of the instructions. Failures are often due to

identifying verbs as nouns (Representative outputs: [N: Cover][N:

skillet], [N: Spoon][N: mixture][ADP: into][N: cups]).

We note a recent relevant work by Diwan et al. [15], suggesting

a NER model to infer recipe instruction structure. We could not

compare our results to theirs as the authors released only partial

code and data at the time of completing this paper.

5.2 Clustering

As noted earlier, each node in the graph corresponds to a set of

semantically similar instructions. Similar instructions could be, for

example, “cream shortening and sugar until fluffy” and “beat butter

and sugar using an electric mixer about 2 minutes until creamy” as

shown in Figure 1.

It is not straightforward to measure how semantically close

two cooking instructions are. For example, consider the following

instructions (taken from apple-cake recipes):

(1) “Toss together the shredded apple, cinnamon and sugar in a

bowl until evenly coated”

(2) “In a large bowl, mix sliced apples, sugar, cinnamon, allspice,

clove and nutmeg”

(3) “In a large bowl, mix flour, baking powder, cinnamon, all-

spice, clove and nutmeg”

Although (2) and (3) share more content, (1) and (2) are semantically

closer. The reason is that (1) and (2) correspond to the stuffing

preparation phase, whereas (3) does not.

In particular, word embedding models (such as [7, 11, 49]) are un-

likely to capture a meaningful distance: in preliminary explorations

we performed, those methods clustered together instructions with

very different verbs and different ingredients.

Thus, we decided to take advantage of the structure extracted by

our parser and create a filtered list of candidate pairs of instructions.
We require that two instructions could be considered for the same

cluster only if the verbs are similar and they share enough ingre-

dients, where ingredients that are common for the dish, such as

apples, count more than rare ones (note that in the example above,

(1) and (2) share more frequent ingredients, even though (2) and (3)

share more ingredients in total). In the following, we explain the

filtering steps and the clustering method.

5.2.1 Candidate pairs of instructions filtering.
Verb similarity. As word embedding models achieve poor perfor-

mance on verbs [51], we manually clustered the most frequent 100

verbs in the data and chose a representative verb per cluster. Then,

we replaced verbs in the instructions with their representative.

Similarity of two ingredient objects. To determine whether two

ingredient objects are similar, we take into account their full ingre-

dient names (𝑖1
𝑓
, 𝑖2
𝑓
correspondingly) and abbreviations (𝑖1𝑎, 𝑖

2

𝑎), and

check if:

𝑚𝑎𝑥

(
𝐽

(
𝑖1
𝑓
, 𝑖2
𝑓

)
, 𝐽

(
𝑖1
𝑓
, 𝑖2𝑎

)
, 𝐽

(
𝑖1𝑎, 𝑖

2

𝑓

)
, 𝐽

(
𝑖1𝑎, 𝑖

2

𝑎

))
≥ 𝑡1

where 𝑡1 ∈ [0, 1] is a threshold and 𝐽 is the Jaccard index
8
. For

instance, for the name-abbreviation pairs: (grand smith apple, apple)

and (red apple, apple) the similarity is 1.

Similarity of two ingredient sets. Let 𝐼1, 𝐼2 be two sets of ingredi-

ent objects; to measure their similarity, we use the weighted Jaccard

similarity coefficient
9
(also known as Ruzicka similarity), taking

into account also the frequency of the items in S. This coefficient

can be restated as:

𝐽𝑊 (𝐼1, 𝐼2) :=
∑
𝑥 ∈𝐼1∩𝐼2 (𝑛𝑥)∑
𝑦∈𝐼1∪𝐼2

(
𝑛𝑦

)
where 𝑛𝑥 is the number of recipes in which ingredient 𝑥 appears.

8 𝐽 (𝑋,𝑌) =
|𝑋∩𝑌 |
|𝑋∪𝑌 | . In our case, 𝑋,𝑌 are the words in the ingredient

name/abbreviation.

9 𝐽𝑊 (𝑥, 𝑦) =
∑
𝑗 𝑚𝑖𝑛 (𝑥𝑗 ,𝑦𝑗)∑
𝑗 𝑚𝑎𝑥 (𝑥𝑗 ,𝑦𝑗)

for two real vectors 𝑥, 𝑦.

We consider 𝐼1, 𝐼2 to be similar if 𝐽𝑊 (𝐼1, 𝐼2) > 𝑡2 for a threshold

𝑡2 ∈ [0, 1]. To calculate 𝐽𝑊 (𝐼1, 𝐼2), the threshold 𝑡1 must be set in

advance, as computing ingredients’ intersection or union expects

knowing for every pair of ingredients 𝑖1 ∈ 𝐼1, 𝑖2 ∈ 𝐼2 whether

they are similar or not. We used Grid-Search on a dataset of 180

manually tagged ingredient list pairs to set values for these two

hyperparameters (within bounds: 0-1), setting 𝑡1 = 0.35, 𝑡2 = 0.325.

For instance, recall the example from the beginning of this sec-

tion. The ingredients of the instructions (1), (2) and (3) are respec-

tively: 𝐼1 ={apples, sugar, cinnamon}, 𝐼2 ={apples, sugar, cinnamon,

allspice, clove, nutmeg}, 𝐼3 ={flour, baking powder, cinnamon, clove,

allspice, nutmeg}. Assuming apples appears 180 times in the multi-

ple recipe set, flour 160 times, sugar 160, cinnamon 140, baking pow-

der 90, nutmeg 35, clove 15, and allspice 10; then, 𝐽𝑤 (𝐼1, 𝐼2) ≈ 0.89

and 𝐽𝑊 (𝐼2, 𝐼3) ≈ 0.25. That is, even though 𝐼2 and 𝐼3 share more

ingredients in total, the similarity score of 𝐼1 and 𝐼2 is much higher

as they share more frequent ingredients.

5.2.2 Training word2vec on recipes.
After filtering pairs of instructions, taking advantage of the struc-

tured output of the parser, we can use a word embedding model

to compute similarities. We trained a CBOW variant of bigram

word2vec model [39] of dimension 100 on recipe instructions, using

Gensim [48]. As mentioned in Section 4, in addition to the Allrecipes

data, in this step we also included a large data set of recipes from

“Now You’re Cooking!”. Note that using the full instruction means

that factors like instruments and time ranges are reflected in the

embeddings.

5.2.3 The clustering method.
We now define the similarity distance between two instructions

that pass the filtering step (share a similar verb and enough ingredi-

ents) to be the cosine distance between their instruction embeddings

(average of word embeddings). We define the distance between two

instructions that do not pass the filtering step to be infinity.

We chose hierarchical clustering with complete-linkage criterion,

merging clusters to the point when only infinitely distant clusters

were left. We chose the linkage and stop criteria after evaluating

several criteria on three manually clustered dishes (that were not

used for the evaluation). Figure 1 shows a sample of instructions

clustered together (to the right of the “beat” node).

We note that we also experimented with clustering with con-

straints (e.g., forcing two instructions from the same recipe to be

in separate clusters; taking into account the instructions’ relative

position in recipe). However, these approaches did not seem to

improve the resulting clusters.

5.3 Constructing the summary graph

We can now construct the summary graph 𝐺 = (𝑉 , 𝐸). For every
cluster, we define a corresponding vertex with weight equals to

the number of instructions in it. We also define source and target

vertices START and END.
We aim to connect vertices corresponding to subsequent actions.

Hence, for every two vertices 𝑣𝑙 , 𝑣𝑘 ∈ 𝑉 \ {START, END}, we con-
sider (𝑣𝑙 , 𝑣𝑘) ∈ 𝐸 if there exist recipes in which an instruction

from 𝑣𝑘 comes right after an instruction from 𝑣𝑙 . The edge weight

𝑤 (𝑣𝑙 , 𝑣𝑘) is the number of such recipes. Similarly, for every vertex

𝑣 ∈ 𝑉 \{START, END}we consider (START, 𝑣) ∈ 𝐸 (or (𝑣, END) ∈ 𝐸)

if there are instructions in 𝑣 that start (or end) a recipe. The edge

weight is the number of such instructions.

Pruning and noise reduction. The graph is often too large to

visualize effectively. Thus, we prune small clusters and weak edges,

as well as nodes and edges that do not belong to a path from START
to END. We then choose up to 20 paths to be displayed to the user.

Note that this pruning is only for visualization purposes, and

the full graph is kept in memory. Pruned parts might be shown to

the user as a part of the interaction (e.g., if they choose to explore a

rare ingredient, light-weighted vertices and paths might be added

back into the visualization).

Ideally, we would have liked to display the 20 heaviest paths to

the user. However, picking out the heaviest simple paths in a graph

is an NP-hard problem. Thus, we resorted to a heuristic approach

adapted from [20]. First, we invert the edge weights and search

for K-shortest paths in terms of the edge weights (with a K that is

sufficiently bigger than the number of paths we finally display to

the user).
10

As our edges are added locally, some short paths do not

actually represent a full recipe (e.g., if there are parts of the recipe

that could be carried out in a different order, this creates a cycle in

the graph that can be shortcut). Thus, we filter out paths that are

too short (number of edges). This bound is set to be the minimal

recipes’ number of instructions after trimming 10% of the smallest

values. Finally, we rerank the remaining paths by normalizing their

weights over their lengths. The highest 20 ranked paths are chosen

to compose the graph displayed to the user.

Importantly, noisy instructions are likely to either become small

clusters and be pruned or join an existing, large cluster and have

virtually no effect on its summary (what the user sees).

Building the graph for ∼ 200 parsed recipes takes around 1-2

minutes on a personal computer.

Visualization. We built a user interface using React.js showing

the compact version of the summary graph (refer again to Figure 1).

Dark nodes contain more instructions, and thick edges represent

strong connections between the nodes. Every cluster is represented

by the main verb and a summarization of the ingredients. Ingredi-

ents are accompanied with relative frequency in the cluster; clicking

on node reveals quantity range (normalized to the most frequent

number of servings), tools and time range. The user can also choose

to see the full list of instructions. Further actions include seeing

lists of common and rare ingredients, tracking ingredients through

a graph, and multi-faceted filtering. User interactions (such as re-

questing specific ingredients) might result in uncovering paths that

were hidden before, as they were not in the 20 chosen paths.

6 EVALUATION

We now turn to evaluating our representation.Wewished to answer

three main questions: (1) Is the representation intuitive, (2) Is the

representation coherent (i.e., do paths correspond to recipes), and

(3) Is the representationuseful.We recruited in total 50 participants,

including 10 experts. Following the recommendation of [45], we

chose to run multiple tests with 11-20 users in each. This also had

10
As we wished to display 20 paths to the user, we set K to 60.

Measures # of scores Average Std

(1) Node coherence 60 4.55 0.723

(2) Reasonable paths 40 3.825 1.196

(3) Graph comprehensibility (1st exp.) 20 4 0.973

(3*) Graph comprehensibility (2nd exp.) 20 3.85 0.72

Table 1: Graph’s clarity & coherence (Likert scale, 1-5).

the benefit of being able to closely observe all the participants using
the system.

We randomly sampled a set of dishes from the most popular

categories (soup, salad, cake etc.), having at least 100 recipes each.

For the experiments we sampled four dishes out of this set: two

simple ones (guacamole, omelette) and two complex ones (apple

cake, spaghetti), judged by the average number of instructions.

6.1 Intuitiveness and coherence of

representation

We started by evaluating the intuitiveness and coherence of the

summary graph. 20 student volunteers were recruited to this ex-

periment. 11 participated in part I, and all participated in part II.

Part I: Intuitiveness.We showed participants the UI for one of the

four dishes without providing any explanation. We asked them to

explain what nodes, edges and paths from START to END represent.

Full, accurate response rates were 81.8%, 90.9%, 90.9% (nodes, edges,

paths respectively). The others provided partially correct explana-

tions. For example, one participant wrote that an edge represents

“a transition between steps in the preparation of the recipe", and a

path represents “all steps in a recipe", but described a node as “the

most common ingredients", which we considered too vague. Thus,

we conclude that the graph is indeed mostly intuitive.

Part II: Coherence. In this part we provided the participants with

a brief explanation of the UI. Our goal was to test the coherence of

the representation (Do nodes correspond to instructions? Do paths

correspond to recipes?), once the participants understood the UI.

Recipes and paths. Given a random recipe, we asked the partici-

pants to mark a path on the graph that fits it best, achieving 75%

success rate. Afterwards, we asked for the opposite, writing a recipe

corresponding to a random marked path, achieving 90% success.

When translating recipes to graphs, most failures were a result

of the participants searching for a path that fitted the given recipe

exactly (although they were told to mark the one that fits it best).

In translating graphs to recipes, one non-native English speaker

participant failed to understand some of the instructions; another

wrote “go over the nodes and perform the steps described in them”

but did not provide an explicit recipe. These results suggest it is

relatively straightforward to translate between recipes and paths.

Node and path coherence.We asked the participants to: (1) pick

three nodes and rate the coherence of the instructions within them;

(2) follow two random marked paths and rate how much they

represent a possible recipe. We also asked them to (3) rate the graph

according to its comprehensibility.

All ratings were in a Likert scale of 1-5 [33]. See Table 1 for

results. Results are encouraging overall, with nodes rated as very

coherent, paths rated as good, and the graph as comprehensible.

6.2 Utility to users

After evaluating the representation, we turned to evaluate its utility

to users. We recruited another 20 student volunteers who were

randomly divided into two groups (A and B), and asked them to

rate their cooking level of expertise (Likert scale, 1-5. group A:mean

level score was 3.5, std=0.92. group B: mean=3.6, std=0.8).

To the best of our knowledge, no benchmark exists for graphs

that summarize many procedural texts. Thus, as a baseline we

simulated what people are likely to use today – recipe books and

websites. In this condition, users received a searchable file that

contained hundreds of recipes for the same dish.

We focused on two dishes: guacamole (easy) and apple cake

(harder). Each user saw both dishes: Group A worked on the gua-

camole dish first and group B on the apple cake first. For the first

dish, users received a searchable file (similar to cooking books and

recipe websites); in the second, they got the UI. For both dishes, we

asked the users to perform the following two tasks:

(1) Clarifying a recipe for a novice cook. We asked participants

to add missing details that might not be trivial to a novice

cook (e.g., add an important action such as cool-after-baking;

explain vague descriptions such as “al-dente”, or specify

an exact amount of salt instead of “to taste”), and replace

unusual things with more common ones.

(2) Adding a creative twist to spice up a recipe.

We limited the time for completing each task to 8 minutes. In the

clarifying task, to avoid the case participants know the answer from

experience, we required references supporting their answers. After

each task, the participants rated how hard it was for them, and

were encouraged to share insights about the dish. At the end, they

were asked to provide general feedback and, as in the experiment

of Section 6.1, to rank the graph’s comprehensibility.

For the first task (clarifying), we selected recipes with common

mistakes.
11

For the second (adding a twist) we picked the simplest

recipe in the data, in terms of number of actions and ingredients.

Participants’ insights and feedback. We were encouraged to

find that participants identified almost twice more insights when

using the graph (13 vs. 7). Overall, feedback was very positive.

Snippets include: “It was such a relief using the summary graph

after having to go over so many recipes”, “This graph is awesome!”,

“The statistics information was very handy and accessible. I wish

all my recipes were shown to me in such form”. Negative feedback

focused mostly on the UI, and not on the content of the graph itself.

A note on fixation. While observing participants performing the

tasks, we noticed that many baseline users fixated on one recipe

(often the first one on the list). As one user explained in their

feedback, “I decided to focus on one recipe and base most of my

modifications on it. The graph gave a more global view from which

I could infer changes more easily”.

Participants’ output.

Verifying feasible outcomes: Since our edge creation method

is local, we wanted to verify that the usage of the graph can still

yield feasible outcomes. Thus, we asked three cooking experts to

11
https://tinyurl.com/guacamole-common-mistakes,

https://tinyurl.com/cake-common-mistakes.

Figure 4: Two of the participants’ modified recipes after

clarifying them for the novice cook with the support of the

graph. For example, in the left modified recipe (guacamole),

the participant decided to mash the avocado with a fork in-

stead of food processor. In the right modified recipe (apple-

cake), the participant realized that the greasing-the-pan ac-

tion was missing and added it.

rate the feasibility of all the experiment’s outcomes on a Likert

scale of 1-7. We measured the mean score, resulting in 5.65 for the

file (std = 1.515) and 5.63 using the graph (std = 1.461). Thus, we

conclude that using the graph does not change the feasibility of the

users’ outcome.

Clarifying for the novice cook: After collecting all the changes
suggested by the participants (see Figure 4 for examples of adjusted

recipes), we recruited two cooking expert to annotate whether

changes suggested by participants: (1) could really assist a novice

cook, (2) could be crucial for the recipe to succeed.

Our experts had good agreement – for guacamole we mea-

sured Cohen’s Kappa=0.661 [10], accuracy=0.867; for apple cake

Kappa=0.593 and accuracy=0.806. We took only changes chosen

by both annotators as ground truth and counted how many were

detected by each participant. For the more complex dish (apple

cake), participants performed significantly better using the graph

(the average number of changes without the graph was 1.9, with

the graph 3.7, p-value = 1.06E-05; critical changes: 1.4 without the
graph, 3.1 with, p-value = 7.68E-07; independent samples t-test). For

the simpler dish (guacamole) there was only a slight advantage in

favor of the graph. These results are compatible with our intuition

that the graph can help more with complex recipes.

We also tested whether the more experienced cooks (10 people;

cooking expertise 4-5), being more aware of nuances, performed

significantly better using the graph. It was indeed the case for both

dishes (2.5 on average without the graph, 3.9 with, p-value = 0.014;

critical changes: 1.1 without, 2.4 with, p-value = 0.0016; independent

samples t-test).

Adding a twist: To reduce individual bias, we collected the two
groups’ unique ingredients (i.e., those appeared in one group and

https://tinyurl.com/guacamole-common-mistakes
https://tinyurl.com/cake-common-mistakes

Figure 5: Percentages of times that unique graph’s ingre-

dients beat unique list’s ingredients. Comparisons are com-

puted within participant.

not in other) and compared them. For that, we asked five cooking

experts to rank (Likert scale, 1-5) each ingredient in terms of: (1)

surprise (how surprising it is for the dish?) and (2) tastiness (how

suitable it is in terms of taste?). We then computed for every pair

of ratings a creativity score, which we defined as the minimum of

these ratings. Creativity is often defined as a combination of novelty

and value [23, 31]; We chose the minimum since we wanted this

score to reflect both the novelty (surprise) and the value (tastiness).

Likert scores are difficult to compare among different people.

Thus, for each expert, we made pairwise comparisons between each

two ingredients they rated, and computed the percentages of times

an ingredient from one group beats ingredients from the other.

The results are in Figure 5. For the apple cake dish, the graph’s in-

gredients beat those of the file in all parameters. For the guacamole

dish, graph ingredients won in terms of tastiness and creativity

but not surprise. Looking closer at the results, we observed that

baseline users often made ingredients up (not basing them on a

recipe), while graph users observed ingredients used in recipes and

tried to generalize them (e.g., different salty snacks or different

tropical fruit), which might explain these findings. Tables 2 and 3

show the winning unique ingredients in terms of creativity and

their origin (graph or baseline). Figure 6 shows a sample of four

prepared guacamole dishes based on the graph users suggestions.

A note on task difficulty. After each task, the participants rated

its difficulty on a scale of 1-5 (1 stood for “piece of cake”,
12

and 5 for

“extremely difficult”). Results are in Table 4. Overall, the tasks where

the user had access to the graph were rated as easier than those

supported by the list (baseline), but the effect was not large. The

change was most pronounced in the clarifying and creativity tasks

for the more complex dish (both statistically significant, p-values =

0.023, 0.048).

While preliminary, we believe these studies demonstrate the

potential of the summary graph representation in helping people

navigate (and make sense of) a large body of procedural texts.

7 RELATEDWORK

Our work is related to multiple lines of work.

12
No pun intended

Rank Ingredient Total creativity score Origin

1 pretzel fragments 18 graph

2 parmesan cheese 17 graph

3 barbeque pringles 16 list

- kidney bean 16 graph

5 soup nuts 15 graph

- chicken breast 15 graph

- cream cheese 15 graph

8 sour cream 14 list

- balsamic vinegar 14 graph

10 bulgarian cheese 13 list

Table 2: The top-ten ranked ingredients in terms of creativ-

ity for the guacamole dish. There were in total 25 ingredi-

ents to compare after collecting the two group’s unique in-

gredients, 9 came from the list and 16 from the graph.

Rank Ingredient Total creativity score Origin

1 blueberries 19 graph

- cherries 19 graph

3 cranberry juice 17 graph

- wrapped caramels 17 list

5 coconut flour 15 graph

6 candied lemon 14 list

- shredded coconut 14 graph

- banana 14 graph

9 lotus spread 13 graph

- carrots 13 graph

Table 3: The top-ten ranked ingredients in terms of creativ-

ity for the apple-cake dish. There were in total 34 ingredi-

ents to compare after collecting the two group’s unique in-

gredients, 19 came from the list and 15 from the graph.

Task Graph support? Avg. Std Avg. Std

Clarifying X 3.3 1.1 3.3 0.9

V 2.8 0.75 2.5 0.67

Adding a twist X 2.2 1.17 2.4 1.11

V 2.1 1.22 1.6 0.8

Table 4: Difficulty level statistics per task with and without

the graph support (left: guacamole, right: apple cake).

Sensemaking. Broadly speaking, the goals of our system align

with these of the sensemaking domain. As described by D. M. Russel

[50], Sensemaking is the task of constructing a mental represen-

tation of interrelated pieces of information relevant to answering

task-specific questions, often in the context of understanding large

document collections. In this paper, the interrelated pieces are a

large collection of procedural texts sharing the same goal, and

the aim is to help users understand them and easily explore com-

monalities and differences in them. Sensemaking has been studied

extensively in various fields, including HCI [27, 50], information

science [14, 25, 28], organizational science [61] and education [2].

As opposed to our work, much of the sensemaking work relies on

crowdsourcing for aggregating and arranging the different pieces

of information.

Figure 6: Examples of participants’ creative guacamole

dishes obtained with the support of the graph: (A) gua-

camole with pretzel fragments, cherry tomatoes and green

onion; (B) guacamole with feta cheese and chives; (C) gua-

camolewithmango, pineapple and corn; (D) guacamolewith

chicken breast, red beans and jalapeno.

Multi-document summarization. Our work is also related to

multi-document summarization, and in particular to graph-based

multi-document summarization approaches [3, 18, 20, 24, 38, 63].

These works also represent document units as graphs, on which

they apply graph-based ranking algorithms to generate a summary.

However, the output is a text (the summary) and not a graph that

allows users to explore commonalities and differences between the

texts. We are also not aware of such methods applied to procedural

texts.

Procedural texts. Understanding procedural texts is the base of a

substantial body of research within natural language understanding

[4, 5, 12, 13, 36, 42, 52, 56]. A prominent line of work suggests ways

to transform natural language instructions into a graph structured

representation [9, 29, 30, 34, 43, 46, 62]. These works use a graph to

represent a single procedural text. In contrast, we summarize many
procedural texts into a single graph. We believe our representation

could aid users in performing sensemaking tasks such as modifying

a given procedure to satisfy individual preferences or constraints.

Cooking Recipes.Much research regarding procedural texts fo-

cuses on cooking recipes [32, 40, 44]. Importantly, most work does

not make changes to recipes, but instead focuses primarily on rec-

ommending recipes from an existing pool [17, 21, 22, 57–60]. Re-

cently, Majumder et al. [35] sought to combine work from recom-

mender systems and text generation. However, their system gives

the user only a little control over the text being produced.

Perhaps the closest work to ours is a work by Chang et al. [8],

which assists cooking experts and culinary students in browsing and

comparing hundreds of recipes via an interactive system. However,

their use case is very different from ours, as their output summarizes

only some of the aspects of recipes, providing a very different view

of the landscape, meant for an audience of experts.

We also note that the idea of aggregating recipes has been sug-

gested before, sometimes jokingly, in popular culture. The book

“Cooking for Geeks” [47] includes a recipe for the “Average Internet

Pancakes”, noting that “No one’s ever wrong on the Internet, so the
average of a whole bunch of right things must be righter, right? The
quantities here are based on the average of the eight different pancake
recipes from an online search”. The website ThePudding took this

idea one step further, taking 200 chocolate chip cookie recipes and

trying to generate the average cookie using a mathematical average,

predictive text algorithms, and neural networks.
13

8 CONCLUSION AND FUTUREWORK

The web is full of procedural texts, many of them sharing the same

goal. When performing sensemaking tasks one needs to be able

to view the bigger picture; however, this is often time-consuming,

requiring extensive browsing and comparisons.

In this work we proposed a novel unsupervised learning ap-

proach for which the input is a set of procedural texts sharing the

same goal, and the output is an intuitive graph representation sum-

marizing them, mapping the landscape of possibilities. We believe

this representation could allow users to explore commonalities and

differences between the various ways to carry out a task and devise

a way to accomplish the task.

We demonstrated our system on cooking recipes, a promiment

example of procedural texts. We devised an unsupervised recipe

parser, taking into account the unique structure of recipes, and

proposed an algorithm for constructing the summarization graph.

User studies showed that our representation is easy to work with

and could help users with several sensemaking tasks, such as un-

derstanding or modifying a recipe.

In the future, we plan to apply the proposed approach to other

domains. For example, many scientific areas use procedural texts

(material science, manufacturing medicine). Using a graph repre-

sentation might help the scientist gain knowledge and insights into

the process. Another exciting avenue is exploring the creativity-

supporting aspects of the graph. We believe identifying anomalies

in the graph could help surfacing creative options.

Beyond the specific application in this paper, we envision a future

where fully automated systems can digest a large set of procedural

texts, answering queries and modifying the texts according to user

needs and preferences.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful comments,

Hyadata Lab members for thoughtful remarks, and the participants

in our user studies. This work was supported by the European

Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (grant no. 852686, SIAM).

13
https://pudding.cool/2018/05/cookies/

https://pudding.cool/2018/05/cookies/

REFERENCES

[1] Aida Amini, Antoine Bosselut, Bhavana Dalvi Mishra, Yejin Choi, and Hannaneh

Hajishirzi. 2020. Procedural reading comprehension with attribute-aware context

flow. arXiv preprint arXiv:2003.13878 (2020).
[2] Abraham Arcavi and Alan H Schoenfeld. 1992. Mathematics tutoring through a

constructivist lens: The challenges of sense-making. The Journal of Mathematical
Behavior (1992).

[3] Elena Baralis, Luca Cagliero, NaeemMahoto, and Alessandro Fiori. 2013. GRAPH-

SUM: Discovering correlations among multiple terms for graph-based summa-

rization. Information Sciences 249 (2013), 96–109.
[4] Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz Mösen-

lechner, Dejan Pangercic, Thomas Rühr, and Moritz Tenorth. 2011. Robotic

roommates making pancakes. In 2011 11th IEEE-RAS International Conference on
Humanoid Robots. IEEE, 529–536.

[5] Mario Bollini, Stefanie Tellex, Tyler Thompson, Nicholas Roy, and Daniela Rus.

2013. Interpreting and executing recipes with a cooking robot. In Experimental
Robotics. Springer, 481–495.

[6] Antoine Bosselut, Omer Levy, Ari Holtzman, Corin Ennis, Dieter Fox, and Yejin

Choi. 2017. Simulating action dynamics with neural process networks. arXiv
preprint arXiv:1711.05313 (2017).

[7] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St

John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al.

2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018).
[8] Minsuk Chang, Léonore V Guillain, Hyeungshik Jung, Vivian M Hare, Juho Kim,

and Maneesh Agrawala. 2018. Recipescape: An interactive tool for analyzing

cooking instructions at scale. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 1–12.

[9] David L Chen and Raymond J Mooney. 2011. Learning to interpret natural

language navigation instructions from observations. In Twenty-Fifth AAAI Con-
ference on Artificial Intelligence.

[10] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and psychological measurement 20, 1 (1960), 37–46.

[11] Alexis Conneau and Douwe Kiela. 2018. Senteval: An evaluation toolkit for

universal sentence representations. arXiv preprint arXiv:1803.05449 (2018).
[12] Estelle Delpech et al. 2008. Investigating the structure of procedural texts for

answering how-to questions.

[13] Estelle Delpech, Murguia Elizabeth, et al. 2007. A Two-Level Strategy for Parsing

Procedural Texts.

[14] Brenda Dervin. 2003. Human studies and user studies: a call for methodological

inter-disciplinarity. Information Research 9, 1 (2003), 9–1.

[15] Nirav Diwan, Devansh Batra, and Ganesh Bagler. 2020. A named entity based

approach to model recipes. In 2020 IEEE 36th International Conference on Data
Engineering Workshops (ICDEW). IEEE, 88–93.

[16] Xinya Du, Bhavana Dalvi Mishra, Niket Tandon, Antoine Bosselut, Wen-tau Yih,

Peter Clark, and Claire Cardie. 2019. Be consistent! improving procedural text

comprehension using label consistency. arXiv preprint arXiv:1906.08942 (2019).
[17] David Elsweiler, Christoph Trattner, and Morgan Harvey. 2017. Exploiting food

choice biases for healthier recipe recommendation. In Proceedings of the 40th
international acm sigir conference on research and development in information
retrieval. 575–584.

[18] Günes Erkan andDragomir R Radev. 2004. Lexrank: Graph-based lexical centrality

as salience in text summarization. Journal of artificial intelligence research 22

(2004), 457–479.

[19] Christiane Fellbaum. 2012. WordNet. The encyclopedia of applied linguistics
(2012).

[20] Katja Filippova. 2010. Multi-sentence compression: Finding shortest paths in

word graphs. In Proceedings of the 23rd international conference on computational
linguistics (Coling 2010). 322–330.

[21] Peter Forbes and Mu Zhu. 2011. Content-boosted matrix factorization for recom-

mender systems: experiments with recipe recommendation. In Proceedings of the
fifth ACM conference on Recommender systems. 261–264.

[22] Jill Freyne and Shlomo Berkovsky. 2010. Intelligent food planning: personalized

recipe recommendation. In Proceedings of the 15th international conference on
Intelligent user interfaces. 321–324.

[23] Berys Gaut. 2010. The philosophy of creativity. Philosophy Compass 5, 12 (2010),
1034–1046.

[24] George Giannakopoulos, George Kiomourtzis, and Vangelis Karkaletsis. 2014.

Newsum:“n-gram graph”-based summarization in the real world. In Innovative
Document Summarization Techniques: Revolutionizing Knowledge Understanding.
IGI Global, 205–230.

[25] Term L Griffith. 1999. Technology features as triggers for sensemaking. Academy
of Management review 24, 3 (1999), 472–488.

[26] Aditya Gupta and Greg Durrett. 2019. Tracking discrete and continuous entity

state for process understanding. arXiv preprint arXiv:1904.03518 (2019).
[27] Nathan Hahn, Joseph Chang, Ji Eun Kim, and Aniket Kittur. 2016. The Knowledge

Accelerator: Big picture thinking in small pieces. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. 2258–2270.

[28] Erling Havn et al. 2006. Sensemaking in technology-use mediation: Adapting

groupware technology in organizations. Computer Supported Cooperative Work
(CSCW) 15, 1 (2006), 55–91.

[29] Shihono Karikome, Noriko Kando, and Tetsuji Satoh. 2018. Flow Graph Gen-

eration Method for Visualizing Procedural Texts. In Proceedings of the 20th In-
ternational Conference on Information Integration and Web-based Applications &
Services. 360–364.

[30] Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke Zettlemoyer, and Yejin Choi.

2015. Mise en place: Unsupervised interpretation of instructional recipes. In

Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing. 982–992.

[31] Carolyn Lamb, Daniel G Brown, and Charles LA Clarke. 2018. Evaluating compu-

tational creativity: An interdisciplinary tutorial. ACM Computing Surveys (CSUR)
51, 2 (2018), 1–34.

[32] Shuyang Li and Julian McAuley. 2020. Recipes for Success: Data Science in the

Home Kitchen. Harvard Data Science Review 2.3 (2020).
[33] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of

psychology (1932).

[34] Hirokuni Maeta, Tetsuro Sasada, and Shinsuke Mori. 2015. A framework for

procedural text understanding. In Proceedings of the 14th International Conference
on Parsing Technologies. 50–60.

[35] Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni, and Julian McAuley. 2019.

Generating personalized recipes from historical user preferences. arXiv preprint
arXiv:1909.00105 (2019).

[36] Jonathan Malmaud, Earl Wagner, Nancy Chang, and Kevin Murphy. 2014. Cook-

ing with semantics. In Proceedings of the ACL 2014 Workshop on Semantic Parsing.
33–38.

[37] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Prismatic

Inc, Steven J. Bethard, and David Mcclosky. 2014. The Stanford CoreNLP natural

language processing toolkit. In In ACL, System Demonstrations.
[38] Rada Mihalcea and Paul Tarau. 2004. Textrank: Bringing order into text. In Pro-

ceedings of the 2004 conference on empirical methods in natural language processing.
404–411.

[39] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In

Advances in neural information processing systems. 3111–3119.
[40] Weiqing Min, Shuqiang Jiang, Linhu Liu, Yong Rui, and Ramesh Jain. 2019. A

survey on food computing. ACM Computing Surveys (CSUR) 52, 5 (2019), 1–36.
[41] Bhavana Dalvi Mishra, Lifu Huang, Niket Tandon, Wen-tau Yih, and Peter Clark.

2018. Tracking state changes in procedural text: a challenge dataset and models

for process paragraph comprehension. arXiv preprint arXiv:1805.06975 (2018).
[42] Dipendra K Misra, Jaeyong Sung, Kevin Lee, and Ashutosh Saxena. 2016. Tell me

dave: Context-sensitive grounding of natural language to manipulation instruc-

tions. The International Journal of Robotics Research 35, 1-3 (2016), 281–300.

[43] Shinsuke Mori, Hirokuni Maeta, Yoko Yamakata, and Tetsuro Sasada. 2014. Flow

Graph Corpus from Recipe Texts.. In LREC. 2370–2377.
[44] Dena F Mujtaba and Nihar R Mahapatra. 2020. Towards Natural Language

Understanding of Procedural Text Using Recipes. In Progress in Computing,
Analytics and Networking. Springer, 359–367.

[45] Jakob Nielsen and Thomas K Landauer. 1993. A mathematical model of the

finding of usability problems. In Proceedings of the INTERACT’93 and CHI’93
conference on Human factors in computing systems. 206–213.

[46] Gustavo Patow. 2010. User-friendly graph editing for procedural modeling of

buildings. IEEE Computer Graphics and Applications 32, 2 (2010), 66–75.
[47] Jeff Potter. 2010. cooking for geeks. O’Reilly Media, Incorporated.

[48] Radim Rehurek, Petr Sojka, et al. 2011. Gensim—statistical semantics in python.

Retrieved from genism. org (2011).

[49] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings

using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).
[50] Daniel M Russell, Mark J Stefik, Peter Pirolli, and Stuart K Card. 1993. The

cost structure of sensemaking. In Proceedings of the INTERACT’93 and CHI’93
conference on Human factors in computing systems. 269–276.

[51] Roy Schwartz, Roi Reichart, and Ari Rappoport. 2016. Symmetric patterns and

coordinations: Fast and enhanced representations of verbs and adjectives. In

Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. 499–505.

[52] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. 2020. Alfred: A benchmark

for interpreting grounded instructions for everyday tasks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10740–10749.

[53] Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer, and Ido Dagan. 2018. Su-

pervised open information extraction. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). 885–895.

[54] Milan Straka and Jana Straková. 2017. Tokenizing, pos tagging, lemmatizing

and parsing ud 2.0 with udpipe. In Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies. 88–99.

[55] Niket Tandon, Bhavana Dalvi Mishra, Joel Grus, Wentau Yih, Antoine Bosselut,

and Peter Clark. 2018. Reasoning about actions and state changes by injecting

commonsense knowledge. EMNLP’18. arXiv preprint arXiv:1808.10012 (2018).
[56] Dan Tasse and Noah A Smith. 2008. SOUR CREAM: Toward semantic processing

of recipes. Carnegie Mellon University, Pittsburgh, Tech. Rep. CMU-LTI-08-005
(2008).

[57] Chun-Yuen Teng, Yu-Ru Lin, and Lada A Adamic. 2012. Recipe recommendation

using ingredient networks. In Proceedings of the 4th Annual ACM Web Science
Conference. 298–307.

[58] Thomas Theodoridis, Vassilios Solachidis, Kosmas Dimitropoulos, Lazaros

Gymnopoulos, and Petros Daras. 2019. A survey on AI nutrition recommender

systems. In Proceedings of the 12th ACM International Conference on PErvasive
Technologies Related to Assistive Environments. 540–546.

[59] Christoph Trattner and David Elsweiler. 2017. Food recommender systems:

important contributions, challenges and future research directions. arXiv preprint

arXiv:1711.02760 (2017).
[60] Mayumi Ueda, Syungo Asanuma, Yusuke Miyawaki, and Shinsuke Nakajima.

2014. Recipe recommendation method by considering the users preference and

ingredient quantity of target recipe. In Proceedings of the International MultiCon-
ference of Engineers and Computer Scientists, Vol. 1. 12–14.

[61] Karl E Weick. 1995. Sensemaking in organizations. Vol. 3. Sage.
[62] Yoko Yamakata, Shinji Imahori, Hirokuni Maeta, and Shinsuke Mori. 2016. A

method for extractingmajor workflow composed of ingredients, tools, and actions

from cooking procedural text. In 2016 IEEE International Conference onMultimedia
& Expo Workshops (ICMEW). IEEE, 1–6.

[63] Jinming Zhao, Ming Liu, Longxiang Gao, Yuan Jin, Lan Du, He Zhao, He Zhang,

and Gholamreza Haffari. 2020. SummPip: Unsupervised Multi-Document Sum-

marization with Sentence Graph Compression. In Proceedings of the 43rd In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. 1949–1952.

	Abstract
	1 Introduction
	2 Problem definition
	3 Implementation
	4 Data collection
	5 Model
	5.1 Unsupervised parser
	5.2 Clustering
	5.3 Constructing the summary graph

	6 Evaluation
	6.1 Intuitiveness and coherence of representation
	6.2 Utility to users

	7 Related work
	8 Conclusion and future work
	References

