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ABSTRACT

Scientific computational models are crucial for analyzing and under-
standing complex real-life systems that are otherwise difficult for
experimentation. However, the complex behavior and the vast input-
output space of these models often make them opaque, slowing
the discovery of novel phenomena. In this work, we present HINT
(Hessian INTerestingness) — a new algorithm that can automatically
and systematically explore black-box models and highlight local
nonlinear interactions in the input-output space of the model. This
tool aims to facilitate the discovery of interesting model behaviors
that are unknown to the researchers. Using this simple yet pow-
erful tool, we were able to correctly rank all pairwise interactions
in known benchmark models and do so faster and with greater
accuracy than state-of-the-art methods. We further applied HINT to
existing computational neuroscience models, and were able to re-
produce important scientific discoveries that were published years
after the creation of those models. Finally, we ran HINT on two
real-world models (in neuroscience and earth science) and found
new behaviors of the model that were of value to domain experts.
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1 INTRODUCTION

Over the decades, the scientific community developed an abun-
dance of computational models that range from abstract to highly
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realistic. Despite the fact that many models have predicted phenom-
ena decades before they were confirmed experimentally [21, 40],
the complexity of models and the size of their input-output space
makes serendipitous discoveries difficult. This reliance on manual
exploration limits scientists’ ability to discover novel phenomena
in computer models that are otherwise not bound by experimental
limitations such as technological accessibility or animal lives.

In this work, we present HINT (Hessian INTerestingness), a tool
to automatically and systematically explore and highlight
potential interesting phenomena in computational models.
This tool enables an exploration of models’ input-output spaces
similar to how one would explore a real system via experimentation;
it thus better utilizes the highly realistic computational models
at our disposal. By highlighting potential emergent phenomena
in computational models, we are able to both produce a list of
suggested future experiments, as well as easily find the parameter
regions where the model fails to reproduce desired outcomes, which
can aid in model fine-tuning and debugging.

Our work is informed by considerable advances in the field of
scientific automation, such as active learning [43] and automated
experimentation [11, 26]. The emergence of accurate yet opaque
black-box models, such as deep neural networks, inspired the study
of model interpretation to better explore those systems [32, 35]. This
automation of exploration requires a theoretical basis to rigorously
define what is interesting to explore. The works of [25, 38] suggest
that an observed sample is interesting if the observers update their
understanding of the system after viewing the sample.

Using HINT, we wish to promote the discovery of interesting
phenomena by highlighting regions in the feature space where
the model behaves not as expected. Thus, we need to formally
define “expected”. We focus on the case where the researchers have
full knowledge of the effect each feature has on the output while
having little knowledge of how these features interact with one
another with respect to the output. This is the case, for example,
in the common situation where each feature is modular and can
be modeled separately (such as individual ion channels in neuron
models [3], or various physical constraints in climate models [36])
and later combined to a more complex realistic model [18].

Thus, when constructing the researcher’s prior of the model,
we heuristically define interestingness as the amount of local non-
linear interaction between features. Building on this heuristic, we
create nonlinear interaction maps for each feature pair across the
parameter space. This allows us to accurately identify and rank the
interacting pairs, locate nonlinear phenomena, and be robust with
a very small sample size.

Other methods have worked on the problem of detecting non-
linear interactions in the past [13, 14, 19, 20, 30, 50], although their
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Algorithm 1 HINT

1: procedure CREATE_HESSIAN
Require: f(x) < A black-box model, f(x) : R™ — R
Require: N; < Number of core samples
Require: featureLimits < (min, max) per feature m
2: fors € N. do
// Sample uniformly between lower and upper bounds

3 Xs < Uniform(featureLimits)
// Run simulator on sample and perturbations
. g, — f)
5: for (i,j) € (7}) do
6: yspmrbi — f(xs + Ax;)

— f(fs + ij)
ysperturbij < f(fs + Axi + Ax])
// Normalize data between 0 and 1

ysperturbj

9: Yy < normalize(y)
// Calculate Hessian using forward difference
YsYs prruri s Y i
. = \.. perturbi perturbj 'perturbi j
10: H(xs)ij < Ax;-Ax,

—_

1: procedure RANK_LOCAL_INTERACTIONS

Require: H(x;) « created with CREATE_HESSIAN
Require: threshold < Threshold in SD units

// Denoise Hessians by rectifying top and bottom 0.1%
H « denoise(H)

// Normalize Hessians by their standard deviation

12:

13: HSD — %(H)
// return filter whose activation crosses the threshold
14: for fSize € [\/ﬁ, VN - 1,...,2,1] do
15: if max(=— Y |Hsp,;(s)]) > threshold then
foize sefSize
16: return fSize
return —1

approach was either data-driven [14, 30] or not local [19], unlike
our local model-driven approach.
Our main contributions are:

e We develop HINT, a tool that facilitates the discovery of
local nonlinear interactions between parameters in complex
black-box simulators.

o Despite the algorithm’s simplicity, we demonstrate that HINT
is able to outperform state-of-the-art methods on known
benchmarks with running time far smaller than all other
methods. In addition, HINT is easy to parallelize and can
scale with computational resources.

e We demonstrate how to use HINT to explore computational
models in neuroscience. Importantly, we reproduce scien-
tific phenomena by running HINT on models that existed
years prior to the original discoveries. In both of the cases
we tried, the phenomena ranked at the top of HINT’s results.

e Finally, we use HINT in an exploratory setting for two realis-
tic and complex models in computational neuroscience
and earth science. We demonstrate how we are able to find
complex behaviors that are of value to the domain experts.
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Figure 1: HINT highlights local nonlinear interactions in
a black-box simulator. (A) In this generated data example,
there are three local nonlinear interactions, and two single
feature effects nearly obfuscating them. (B) When running
HINT on the model, we highlight the local nonlinear inter-
actions, presenting their feature regions to the researcher.

2 THE ALGORITHM
2.1 Problem definition

Let f(x) : R™ — R be a black-box simulator that receives a feature
vector x € R™ and outputs a scalar result y (or raw output r from
which scalar feature y is extracted). For example, in a conductance-
based model of a neuron [18], features can include ion channel
densities and the output could be the number of somatic spikes.
Let f* denote the researchers’ prior beliefs of the model. We as-
sume that researchers know the independent effect each feature has
on the output. However, based on the modular structure of computa-
tional models, non-linear interactions between the features are not
necessarily easily predicted. For example, a researcher might know
the response to voltage of each voltage-dependent ion channel, but
still not predict the emergent behavior of a neuron with several
interacting ion channels. In this work, we set the researchers’ prior
to be such that the combined effect of any two features is equal
to the linear summation of the effects of each individual feature.
Let fj(x, Axj) = f(x + Axj) — f(x). We assume the researcher be-
lieves f*(x + Ax; + Axj) = f(X) + fi(x, Ax;) + fj(X, Ax;) for every

i # j. Thus, when calculating the mixed derivative (g - éfc) , we get
i0Xj
Sf*(x) _ fT(x+0xi+0x))—f (Xx+6x;)—f +5x;)+f (%) _
Ox;i0xj Ox;-0x; -
FGO)+fi(x, 6xi)+fi (5, 6x;)—f (x+0x;)—f (X +5x;)+f (%) _
5Xi'5Xj -
fE)+fGe+6xi)—fE)+fG+5x))—f X)—f G+5x:)—f G+6x)+f () _ 0
5x,--5xj -

2.2 Our approach

To calculate where a sample does not fit the researchers’ prior, we
approximate the Hessian (the matrix of second-order partial deriva-
tives) of the output of the simulator with respect to every feature
pair (x;, x;) € () (H(%)ij = %ng, see Algorithm 1). As shown in
Section 2.1, we assume the researcher believes the mixed derivative
H(f*(x))ij = 0 for every i # j. To find the input-output regions
where the model does not fit the researchers’ prior, we define the
interestingness of a sample by the absolute value of H(x);; - the
more nonlinear is the interaction between features i and j the more
interesting it is to the researcher. In our previous example, the re-
searcher who studies the effects of ion channels might be surprised
and interested to find that certain regions in the density space
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cause ion channels to increase each other’s effect on the number of
spikes. Because we do not have f as an analytic function, but only
as a black-box simulator, we cannot derive the Hessian analytically.
However, with the model, we use our ability to sample as we wish
(Alg. lines 3-8) and to compute the mixed derivative using forward

difference method (f(x)_f(x+AXi)_J;(:ifﬁgﬂf(wﬂm+AXj)

10). The result is used to rank the samples according to their and
their surroundings nonlinearity, leading to the discovery of novel
emergent phenomena (see Figure 1).

In order to highlight the samples where the model does not fit
the researchers’ prior beliefs, we employ two methods of rank-
ing: global pairwise interaction rank and local interaction rank.
For the global ranking, we calculate the mean across core samples
of the absolute mixed derivative for every feature pair rank;; =

, Alg. line

NLC Zﬁi‘l |H;j(xs)|. However, the global ranking could not distin-
guish between feature pairs that interact strongly only at one con-
fined region or feature pairs that interact weakly across the entire
input-output space. To highlight the features that interact strongly
at a specific region, we first denoise the Hessian from outliers by
rectifying the top and bottom 0.1% (Alg. line 12), then normalize it
by its standard deviation for all samples and all feature pairs. For
each feature pair, we then iteratively run an average spatial filter of
decreasing size (Alg. lines 14-16). We take the maximum activation
for each filter size and receive a monotonically increasing function.
The local phenomena ranking is the first filter size that crossed a
predefined threshold that controls the sensitivity of the local rank-
ing measurement (see below for discussion on threshold choice).
This simple yet powerful method allows us to correctly rank all
global pairwise interactions in existing benchmarks (Section 3.2,
Figure 2A-D), as well as find the local nonlinear interactions with
high degrees of precision and recall (Figure 2E-F).

Hyperparameters. Our algorithm includes several hyper-parameters

that a researcher can adjust. N¢, or the core sample number, is
the number of uniformly sampled feature vectors around which we
look for nonlinearities. For global interaction ranking in systems
where the nonlinearity does not change locally, a single core sample
N = 1is sufficient to correctly classify all feature pairs. For local
interactions, the larger is N, the higher is the accuracy.

m, the number of features, controls which features will be per-
turbed and which feature pairs will be ranked. Excluding features
from the algorithm will make it run faster, but prevent the discovery
of new local or global interactions using these features.

Axij, the step size, determines the distance of the perturbation

from the core sample, written as a fraction of the feature range.
2

This step should be small, as the approximation error is pror ol

f(X)if(XJrAxi)iJ;(,fiﬁg)+f(x+Axi+ij) ~ O(Ax;Axj). In this work

we chose Ax; to be 1% in the data generation phase to keep the
approximation error small. We present the results using Ax; = 10%
to better illustrate the effect of perturbing the parameters.
Finally, the threshold in the local interaction ranking deter-
mines the value required after averaging the normalized Hessian of
all samples within a certain filter size. The lower the value, the more
sensitive the ranking is to small derivatives and the higher are the
scores of the local interaction pairs. We used a threshold of three
standard deviations to reduce the chance of spurious interactions.
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Robustness. HINT retains its accuracy for various nonlinear inter-
action types (Figure 2A) and for various sample sizes (Figure 2B).
See details in the next section. It is, however, susceptible to intrin-
sic noise in the model (i.e., when sampling the same feature input
vector returns different results each time). This reduction in HINT
performance can be handled under the assumption that the noise
has zero mean, by averaging over several samples from the same
feature vector while using a larger step size Ax; (see Figure 2C).

Complexity analysis. HINT samples N, core samples (Alg. line
3), in addition to N, local perturbations for each of the m features
and N, perturbations for each feature pair, s.t. n = N¢. - (m? + m+1)
(Alg. lines 4-9). Then, it numerically computes N, local Hessian
matrices, each taking O(m?) (Alg. line 9). Thus, the time complexity
is O(N; - m?), or O(n). The space used is the sampled dataset of
N - (m? + m + 1) samples, each consisting of a feature vector of size
m and a result scalar, making it O(N, - m®). The m? local interaction
maps use N samples each, making the space complexity O(N,. - m?)
or O(n-m). Note that the algorithm is “embarrassingly parallel” and
scales linearly with the number of machines. In practice, HINT is
very fast (see Section 3.1.2 for details).

3 RESULTS
3.1 Synthetic data

To test the accuracy of HINT, we ran experiments on four synthetic
models: three discussed in the literature and one of our own de-
sign. We compared our results on the known models to previous
benchmarks and report the results here.

3.1.1 Benchmarks. To the best of our knowledge, no other method
exist that ranks local nonlinear interactions directly in black-box
models. However, several data-driven works exist who rank interac-
tions on given data. We use them here as a baseline for comparison.
e ANOVA fits a Generalized Additive Model (GAM) [17] to the
data with all single parameters and pairwise interactions. It
then calculates each interaction strength by its p-value [50].
PDP [14] calculates the H-Statistic, which can be defined
i [k oo i) =B Geip)=FieCeno) |
i ﬁ]?k(xij’xik)
partial dependency plot. In practice, PDP often uses gradient
boosting. It is possible to run PDP directly on the model,
while finding only global interactions (worse but comparable
to HINT’s performance in global interaction detection).
GA2M [30] fits a GAM to the data using shallow trees and
iteratively search for areas where the additive model does not
capture the data, ranking these parameter pairs as nonlinear.
For fair comparison with the methods that do not benefit from
data that is structured as HINT requires, we uniformly sampled an
equal size dataset of n = N, - (m? + m + 1) scattered samples for
the benchmarks to rank (running these benchmarks on the original
structured data reduced their performance, as the mixed effects
were far smaller than the total signal).

), F being the

2 _
as (ij =

3.1.2  Global pairwise interaction. We used three synthetic models
in our experiments. The first, “Complex function” [19], is

x
F(x) = x1*2+/2x3 — sin_l(x4) + log(xs + x5) — * XoX7
X10
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Figure 2: Evaluation on synthetic data. A. Average area under the precision-recall curve on global interaction models, using
N¢ = 1, for the complex function, Gaussian (10) and Gaussian (100) from Section 3.1.2. HINT reached 100% accuracy using
a single core sample for all models. B. Average area under the PR curve on the Complex function for different number of
N, samples. The benchmarks required orders of magnitude more samples to reach the same accuracy as HINT. C. Precision-
Recall curves for the performance of HINT on Gaussian (10) with added noise. A single feature vector and its perturbations
were sampled N, times, and the Hessian approximation was done on their averages. D. Runtime for ranking the Gaussian (100)
model using N, = 1. E. HINT accuracy in detecting the exact location of nonlinear phenomena in a randomly generated model
defined in Section 3.1.3. HINT performance increases with the number of core samples. F. The Precision-Recall curves of the

performance of HINT in detecting local nonlinearities for m = 2.

Parameters x4, x5, X3, X190 were sampled from U(0.6, 1.0) and the
rest were sampled from U(0.0, 1.0).

The second synthetic model, Gaussian (10), was a summation
of randomly generated functions, as described in [13]. For each
iteration, we generated a summation of 25 interactions between
subsets of 10 parameters. The third synthetic model, Gaussian
(100), was created similarly to Gaussian (10) but using 1000 inter-
actions between subsets of 100 parameters.

In Figure 2A-C we show HINT’s performance in detecting all
feature pairs with nonlinear interactions. Using N, = 1 and m? + m
perturbations around it, HINT was able to correctly classify all
interacting pairs in the models described above, with an average
area under the precision-recall curve of 1. As exhibited in Figure 2A,
HINT outperforms all other compared methods.

In Figure 2B, we show that HINT retains its advantage in larger
sample sizes. When classifying pairs in the Complex function model,
the next most accurate method required n = 11100 samples to detect
all interacting feature pairs, while HINT required only n = 111 (a
single N and m? + m perturbations).

To test HINT’s vulnerability to noise in Figure 2C, we used the
previously defined Gaussian (10) model with an added Gaussian
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noise with mean 0 and variance of 21—0 of the signal variance. We
set Ax; = 0.1, and ran the simulator on a single randomly sampled
feature vector N. € {5-10!,5 - 102,5 - 103,5 - 10*} times. We
averaged over the values of the core sample and approximated
the Hessian with the perturbations around it, which also averaged
over N, iterations. As displayed in Figure 2C, the accuracy of HINT
increased with the number of iterations in the case of noise.

Running time. We compared HINT’s running time to benchmarks
on the Gaussian (100) model using N, = 1 (n = 10101) samples. As
exhibited in Figure 2D, HINT required substantially less running
time than the next fastest method, 26 seconds compared to 544
seconds and had much greater accuracy. Note that we added the
sampling time for HINT while removing it from the other methods’
time as they work on pre-existing datasets and do not require sam-
pling structure. Given data, HINT required 0.5 seconds to correctly
rank all 4950 putative interacting pairs in the Gaussian (100) model.

3.1.3  Local interaction. Unlike the previous existing models that
tested global ranking, here we suggest a new benchmark created
to test local interaction detection, similar to the global interaction
model created by [13]. In this model, several local multivariate
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Figure 3: Model of a neuron used in Section 3.2. A. Full re-
construction of a layer-5 pyramidal cell. Dendrite is shown
in the inset. B. The dendrite can be approximated as a sin-
gle compartment with ion channels and excitatory and in-
hibitory synaptic inputs. C. This approximation can be mod-
eled as a single compartment RC circuit.

Gaussian functions are randomly sampled with random magnitudes
and centers. Unlike the global interaction model, the features in this
model interact only in a small portion of the feature space, making
the discovery of nonlinear interactions more difficult. For modeling
details, see Reproducability Appendix A.2.5.

In (Figure 2E-F we show HINT’s performance in detecting the
local interactions for each sample and for each feature pair. To allow
HINT to detect interactions in the entire feature space despite sam-
pling a finite amount, we used linear interpolation of the absolute
mixed derivatives for each feature pair. We ran 30 random itera-
tions of this model, each with number of features m € {2, 5, 10},
and number of core samples N, € {1, 10, 100, 1000}. The number
of phenomena was set to be three and the magnitudes were ran-
domly sampled from U(10, 20). Our performance increased with
the number of samples, reaching near 95% (Figure 2E-F).

3.2 Reproductions of Scientific Discoveries

Our goal is to design a method for researchers to easily identify
interesting unknown behaviors of their models, thus facilitating
the discovery of putative real phenomena. We applied HINT on
realistic neuron models used in computational neuroscience to test
if it finds phenomena that are of interest to the scientific community.
We chose two cases of models commonly used for between seven
years [18] and two decades [23], and demonstrate how applying
HINT to them finds two discoveries published in 2017. For the first
example, we looked for a simple well-known system that still hid
an interesting nonlinear interaction. For the second example, we
chose a more complex system, testing HINT’s ability to detect an
interesting behavior among many possible interactions. In both
cases, we wished to see if HINT could replicate a discovery that
was made experimentally in a highly nonlinear system using only
a computational model of that system.

3.2.1 Realistic neuron modelling framework. In this section, we
search for highly nonlinear interactions between various cellular
mechanisms in computational models that simulate the behavior of
single neurons. A common approach in computational neuroscience
is to approximate the full multi-compartmental neuron (Figure 3A)
as a single compartmental model, consisting of membrane ion chan-
nels and excitatory and inhibitory synapses (Figure 3B):

dv
Cm - = Zgi -(V(t) - Ei)
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This compartment can be modeled as an RC circuit (Figure 3C),
with the ion channel/synaptic conductance g; representing the
membrane resistivity, the ion channel/synaptic reversal potential
E; modeled as batteries, and C;, representing the membrane ca-
pacitance (see Appendix A.4 for a more in-depth description of
the models). As g; is a function that can be dependent on voltage,
time and/or other ion channel currents, this model can be highly
nonlinear and generate complex emergent phenomena.

3.2.2  Reproduction of the effect of timed synaptic inhibition on the
NMDA spike.

Background. The first system we studied was the interaction
between excitatory and inhibitory synaptic inputs to the dendrites,
where the neuron receives inputs (See inset in Figure 3A). Pyramidal
cells receive a complex spatio-temporal pattern of inputs that in-
crease (depolarize) and decrease (hyperpolarize) the membrane volt-
age [28]. These dendritic inputs are integrated at the soma to gener-
ate action potentials and communicate with other neurons. While
some of these inputs have a relatively linear effect on the mem-
brane voltage, like the excitatory AMPA and the inhibitory GABA 4
synapses, some are highly nonlinear, like the NMDA synapse [23].
The current flowing through the NMDA synapse depends on both
the NMDA activation time and the local voltage, allowing it to
create a regenerative phenomenon called the “NMDA spike” [37].
The NMDA spike is involved in learning and computation and has
been studied for more than a decade [1, 31, 37]. Although the model
for the NMDA current existed for over two decades [23], the non-
linear interactions between the NMDA synapse and other cellular
mechanisms still allow new discoveries to be made [8, 9, 22].

Phenomenon. A recent paper [8] found that inhibitory input has
a highly nonlinear and surprising interaction with the NMDA spike:
while the NMDA spike was resistant to inhibition arriving at its
onset, it became more vulnerable the later inhibition arrived. To
see if HINT could automatically capture this finding, we used a
simple model simulating a dendrite receiving inputs (see Appen-
dix A.4.1). The features were the strength (i.e. the conductance)
of the excitatory NMDA synapse, the strength of the inhibitory
GABA 4 synapse, and the time difference between the two, making
our feature dimension m = 3. The feature limits were based on
realistic synaptic conductance ranges and time difference between
local inputs [18]. For the output scalar function, we chose the time
integral of the membrane voltage, which is a good indicator of the
strength of the NMDA spike [37]. We randomly sampled N = 3000
feature vectors and N¢ - ((*}) + m) = 18000 permutation input
vectors, resulting in n = 21000 samples. We simulated each input
vector using the NEURON simulation software [7] and extracted
the membrane voltage time integral as described in Appendix A.4.1.
Next, we approximated the Hessian of the core N samples using
forward difference method.

Discoveries. The most nonlinear pair HINT found was the NMDA
synaptic strength and the time difference between the NMDA activa-
tion and the GABA 4 activation (Figure 4A). Out of the entire feature
space, the most nonlinear sample HINT found was the one that
exhibited the phenomena reported in [8]: In Figure 4B the NMDA
spike is on the threshold between regeneration and termination. An
increase in the time difference caused the inhibition to terminate
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Figure 4: Top nonlinear interaction automatically found in the NMDA/GABA model (Section 3.2). A. Mixed derivative map
of the integral of the membrane voltage with respect to the time difference between excitation and inhibition (x-axis) and
the conductance of the AMPA/NMDA receptors (y axis). Red/blue areas represent samples that had a supra-linear/sub-linear
interaction. Colorbar is normalized to mixed derivative SDs, and rectified between [-6, 6] SDs for clarity. Dot 1 represents the
most nonlinear sample. Dots 2-4 are the perturbations around it. B. Raw simulator output on dots 1-4. The dendritic voltage
trace returned by running the model on the most nonlinear sample (upper left), after perturbing NMDA (upper right), Delay
(lower left), and both (lower right, solid line for double perturbation result, dashed line for linear summation of the effects
of the two single perturbations). Red/blue areas under the trace show where the voltage increased/decreased, respectively,
compared to the original trace (for single perturbation) or compared to the linear summation (for double perturbation).

the NMDA spike, while an increase in the NMDA conductance
allowed the NMDA spike to regenerate after inhibition. The in-
crease in both features caused the NMDA spike to stay around the
threshold, barely regenerating from the inhibition.

This vulnerability of the NMDA spike, here found automatically,
was the core finding of [8], and was found experimentally by [9].

3.2.3  Reproduction of the effect of Backpropagating action potentials
on subsequent EPSP.

Background. The second system we chose to test HINT on was
the Backpropagating action potential (BAP) [42] and its influence
on dendritic voltage. After an action potential is initiated at the
axon, it backpropagates to the dendrites, depolarizing the mem-
brane voltage. This change in voltage evokes ion channels that
further impact dendritic computation and plasticity [41, 48]. How-
ever, due to the interplay between voltage-dependent ion channels,
it is difficult to predict the effect the BAP will have on this system.

Phenomenon. In [24], the researchers found that an excitatory
postsynaptic potential (EPSP) arriving after a BAP is smaller than
an EPSP arriving without a BAP proceeding it, due to the activation
of potassium channels that hyperpolarize the local voltage. We
wished to test whether HINT could highlight this behavior when
faced with a complex system of 12 interacting features. As before,
we simulated a single compartment approximating a dendrite with
leak channels, AMPA / NMDA synapses and GABA 4 synapses (see
Appendix A.4.2). We added voltage- and ion-dependent ion channels
found in an apical dendrite [18], making the model of the dendrite
more realistic. Finally, we added a simulation of a BAP arriving
to the dendrite, representing the distance of the dendrite from the
soma by a feature controlling the attenuation of the BAP’s height.
Unlike the previous model, here we tried to simulate the ongoing
in-vivo input arriving to the dendrite. To do that, we randomly
sampled the activation times of the AMPA / NMDA and the GABA 4
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synapses from Poisson distributions and set the rates to be features,
making our feature dimension m = 12 (see Appendix A.4.2). As
before, the raw output of the simulator was the membrane voltage
and the chosen output scalar was the voltage time integral, which
gave a unified indicator of the voltage throughout the simulation
duration. We randomly sampled N, = 3000 feature vectors and
Ne-(("})+m) = 234000 permutation vectors, resulting in n = 237000
samples. We simulated each sample using the NEURON simulation
software [7] and extracted the membrane voltage time integral.

Discoveries. When ranking the most nonlinear feature pairs, the
top three were the excitatory rate and inhibitory rate, the Leak
channel conductance and Inhibitory input rate, and the BAP height
and Exitatory input rate (Figure 5A). While the first two were known
[22], the interaction between the height of the BAP and excitatory
inputs was found experimentally in biological neurons in 2017 [24].
However, using HINT, we were able to find it using models created
in 2011 [18], showing that additional excitatory input arriving after
a larger BAP has a much smaller impact compared to the same
input arriving after a more attenuated BAP (Figure 5B). Most other
interactions found were known in the literature and addressed the
sublinear effect of multiple inhibitory currents.

4 EXPLORATION

In this section we set out to find putative new interesting discover-
ies. We start by exploring single neuron firing patterns (Section 4.1).
We then test the applicability of HINT to domains other than neu-
roscience, and study a model from climate sciences (Section 4.2).

4.1 Single neuron firing patterns

We tested HINT on a long-standing question in neuroscience: How
do ion channels contribute to the firing properties of neurons? [33].
Our goal was to search the feature space of ion channel densities
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Figure 5: Nonlinear interaction automatically found in the BAP model (Section 3.2). A. Same as Figure 4A, with x-axis: excita-
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Figure 6: The top 3rd nonlinear interaction automatically found in the burst model (see Section 4.1). A. Same as in Figure 4A,
with the two parameters being the voltage dependent potassium (x-axis) and the calcium dependent potassium (y-axis). B.
Same as in Figure 4B. The somatic voltage trace returned by running the model on the most nonlinear sample parameter
vector (upper left), after perturbing the voltage dependent potassium (upper right), the calcium dependent potassium (lower

left), and both (lower right).

and find interesting firing behaviors that can be verified experimen-
tally. As this system has highly nonlinear interplay between ion
channels, it was ideal for testing HINT’s ability to find interesting
behaviors in a scientific computational system. In order to study
the spiking behavior of the neuron, we simulated a model of a soma
using the ion channels and passive properties described in [18]
(see Appendix A.4.3). We set the features of this model to be the
parameters controlling somatic ion channels densities. For each
sample, we simulated an injection of 0.5 nano-Ampre of current to
the soma, evoking a spiking activity. We chose the scalar output
function to be the inter-spike interval coefficient of variance and
looked for interesting patterns of activity using HINT.

The first two interactions ranked highest by HINT were already
known (controlling long duration action potentials and depolariza-
tion block [4]). The third interaction, between calcium dependent
potassium and voltage dependent potassium, however, led to an
interesting observation: given the current injection, the neuron re-
sponded by a set of several bursts (Figure 6B1). This behavior, called
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tonic bursting, has been studied in simplified models specifically
designed to create such behavior [21] as well as in experiments
[15]. It is believed to be involved in oscillations in the cortex [15].
The ability of voltage-dependent potassium and calcium-dependent
potassium to switch between non-bursting and bursting behavior
was found experimentally [45, 49]; however, using HINT, we were
able to find a region of ion channel densities where the voltage- and
calcium-dependent potassium channels had a finer control over the
behavior of the model than previously described.

Figure 6 demonstrates our finding. Increasing the density of
calcium dependent potassium channels caused the cell to only
fire a single burst of spikes (Figure 6B2). Increasing the density
of voltage-dependent potassium caused the cell to fire a smaller
number of spikes in its burst (Figure 6B3). Increasing both caused
the cell to not fire at all (Figure 6B4). Further exploration of the
input-output region automatically found by HiNT showed that the
voltage-dependent potassium channel controlled the inter-burst
interval while the calcium-dependent potassium channel controlled
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the number of spikes in each burst. Notably (and unlike Section 3.2),
we were able to find this unique interaction between the features
without prior knowledge and using a model which was not
specifically designed for any tonic bursting related behavior [18].

4.2 Earth sciences

So far, we have demonstrated HINT on neuroscience models. How-
ever, it can be used to reveal local nonlinearities in any black-
box simulator. We now test the tool on another domain that is
rich in highly nonlinear, realistic, data-driven models: Earth sci-
ences. We collaborated with a lab that studies an NPZD (Nutrient-
Phytoplankton-Zooplankton-Detritus) model, commonly used as
representation of the ecological system in the ocean [10]. This
model contains four coupled equations describing the concentra-
tion evolution of these four variables in time, set in a physical model
simulating ocean depth and forced by insolation [5].

To explore the input-output space of this model, we perturbed
15 features (see Appendix A.4.4) and ran the simulation. Our output
scalar function was the timing of the phytoplankton population
peak, signifying the phytoplankton bloom. The mechanism for this
phenomenon is controversial [2, 44] and has been examined using
both ecological models and observations.

Using HINT, we found that the ranking for growth rate and mor-
tality rate was higher than the other pairs by a large margin (Score
of 75 compared to 48 for the next-highest feature pair). Inspecting
the results, we found that HINT was able to highlight a feature
region that limited the behavior of the model: when the growth
rate/mortality rate ratio was below a certain threshold, the phy-
toplankton population never rose above the starting value. This
undesired behavior was new and intriguing to the researchers and
its discovery can assist in constraining the feature space for this
model. This further demonstrates the ability of HINT to find infor-
mative input regions in scientific models.

5 RELATED WORK

To the best of our knowledge, this work is the first attempt to
automatically highlight local interesting phenomena in scientific
models, where interestingness is defined as updating users’ priors.
However, our work builds on many other studies before us:

Our work is greatly influenced by attempts to mathematically
define interestingness. By defining learning as the compression of
models, Schmidhuber [38] defined interestingness as the deriva-
tive of model compression introduced by observing a new sample.
Similarly, the subjective interestingness theory [25] defines inter-
estingness as the update in users’ beliefs after observing the data.
In his work on SICA [25], De Bie proposes a rigorous mathematical
framework for reducing the dimensionality of data such that it will
organize datasets with respect to their update of users’ priors.

Computer scientists have been trying for decades to automate
the process of scientific discovery, starting from rule discovery
by ABACUS [12] and BACON [6], with recent developments by
[26, 39, 51] and others. HINT differs from those works mainly by
searching for local phenomena, instead of global rules, and by
assuming a black-box simulator instead of unstructured data.

The use of neuroscientific models as targets for scientific anal-
ysis was introduced and advanced by Eve Marder [34]. Marder
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revolutionized the use of neuroscientific models, exploring their
input-output spaces and studying how their behavior changes with
feature perturbation. Following her work, Uncertainpy [46] per-
forms sensitivity analysis on neuroscientific models, showing how
sensitive are the model parameters to individual perturbation.
Finally, other tools were built to detect nonlinear pairwise in-
teractions: ANOVA fits a GAM to the data [17], then calculates
the interaction strength of each feature by its p-value [50]. RuleFit
[13, 14] fits sparse linear models using binary decision rules, and
tests the interaction between features by their decomposition into
two additive partial dependence plots. VIN [19] created a graph of
interactions using additive decomposition of the black-box model.
Similarly, GA2M [30] finds interacting pairs by calculating the error
of a GAM, thus finding the relevant pairwise interaction terms to
add to the model. Our method differs from these tools by exploring
black-box simulators, while they explore unstructured data.

6 DISCUSSION AND CONCLUSIONS

In this work we presented HINT, a tool that highlights interesting
and potentially novel phenomena by ranking local interactions be-
tween features in scientific models. We tested HINT on existing and
new synthetic models, outperforming all state-of-the-art methods
in a smaller running time. In addition, we reproduced the discovery
of experimentally confirmed phenomena using scientific models
that were created prior to the original theoretical and experimental
discovery. Finally, we tested HINT on two currently studied models
(in neuroscience and earth science) and discovered phenomena that
are of interest to the scientists studying those fields.

Compared to existing tools available, HINT has several advan-
tages: It is model-agnostic and can accept any model defined as
f(x) : R™ — R. It requires a very small number of samples (in the
order m? samples when m is the number of features). It is capable
of accurately highlighting local nonlinear interactions, allowing re-
searchers to easily identify bifurcations, borders between different
states, and unknown local properties of models.

However, HINT has several limitations that should be addressed.
First, as HINT aims to find interactions in scientific computational
models, it is model-based rather than data-based. While this al-
lows us to sample structured data and to numerically calculate
the Hessian using forward differences, this also prevents us from
using HINT on real-life unstructured data. Likewise, the forward
difference approach requires accurate sampling of data from the
underlying model. In case of noise, HINT’s performance reduces,
and more samples are necessary to correctly detect the interactions.

In addition, HINT requires the definition of a scalar output func-
tion. This means that any interesting behaviors that manifest in the
raw data but are not captured in its transformation to scalar form
may not be revealed in HINT (e.g., phase shift of a periodic func-
tion may not manifest when the output function is the integral).
This restriction of the model output limits the abilities of HINT
and should be improved in the future, e.g., by performing informed
dimensionality reduction of the raw data to an interpretable feature.

Finally, HINT highlights input-output regions that contrast a
single heuristic assumption, namely that all features do not interact
with one another with respect to the output. While this was suffi-
cient to find previously unknown behaviors in models explored in
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this work, the actual priors modelers have while studying models
might be different than our chosen heuristic. Similar to the work
of De Bie [25], we would want users of HINT to be able to flexibly
define priors that fit their beliefs, such that the highlighted samples
will be as effective in updating said priors as possible. We believe
that such automated tools to explore computational models can
serve as a vehicle to accelerate scientific discoveries in many fields.
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A REPRODUCIBILITY
A.1 Code and data availability

The implementation of HINT in Python can be accessed via this link
(https://github.com/MichaelDoron/HINT). The same git repository
holds the code running the benchmarks Anova, GA2M and PDP,
as well as the synthetic and computational models in Sections 3
and 4 and compressed files containing the data simulated from the
computational models.

A.2 Synthetic black-box models

A.2.1 Complex function. Following the work of [19], we defined
the first synthetic model as the function

X
F(x) = m1%2\2x3 — sin” H(xq) + log(x3 + x5) — X _ X037
X10

Features x4, x5, xg, X190 were uniformly distributed between the
limits [0.6, 1.0] and the rest were uniformly distributed between
[0.0,1.0]. The ground truth for this function were the pairs { (x1, x2),
(%1, x3), (x2, x3), (2, %7), (%3, X5), (7, x8), (x7, X9), (x7, X10), (X8, X9),
(xs, x10), (x9, x10) }

A.2.2  Gaussian (10). Following the work in [13], we generated
a random model that sums 25 multivariate Gaussian functions,
each receiving a subset of 10 variables, thus receiving 45 possible
interacting pairs. Ground truth was all pairs within the 25 subsets.
Detailed explanation is found in [13].

A.2.3  Gaussian (100). Following the work in [13], we generated
a random model that sums 1000 multivariate Gaussian functions,
each receiving a subset of 100 variables, thus receiving 4590 possible
interacting pairs. Ground truth was all pairs within the 1000 subsets.
Detailed explanation is found in [13].

A.2.4  Noisy Gaussian (10). To generate the Noisy Gaussian, we
sampled 1000 samples from the randomly generated Gaussian (10)
model, and calculated their standard deviation o;gpnq;. Then, ran
the Gaussian (10) model on new samples, adding Gaussian noise

o2
N(0,

signal

20

) to the result.

A.2.5 Local interactions. Given several local phenomena Np, we
construct a function

N, m
F(x) = )" Lzp) + ) ki xi"
p=1 i=1

with k; being a coefficient for the non-interacting effect of x; and r;
being the power to which the x; is raised. k; is an integer randomly
sampled from U(-5, 5), and r; is an integer randomly sampled from
U(1,3). zp is defined to be a function of x, returning a permutation
of a subset of the input dimensions of x

2p = {x5, ()}
Each perturbation set s, is a random perturbation of the integer
set {1,..., m} with a random length n, = |2 +r], r being drawn from
an exponential distribution with mean 1. Finally, let L(z,) be an
ny-dimensional local Gaussian function
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s - )

with g and ¢ being vectors of magnitudes and centers (respectively)
of length ny,.

For ground truth, we took all points for which the function value
was not negligible (the function is between 0 and e, and we set

the threshold of contribution at Teoo’ which we receive when the

el s
values are e = ¢!°9(xw) = ¢75-9). Thus,

n 2
1, if¥;7 (gi . (ZPi - ci)) <59
0,

y(zp) =
otherwise

A.3 Benchmarks

A.3.1 GA2M. We used the MLTK Java package [29] to run GAZM
on the data. We discretized the data using 256 bins, trained a boosted
tree ensemble with 1000 trees, and ran FAST on the residuals using
8 bins.

A.3.2 ANOVA. We used the mgcv R package [50] to train a GAM
on the data, and calculated the p-values of all possible feature pairs.

A.3.3 PDP. We used the gbm R package [16] to train a gradient
boosting machine with 1000 trees and to calculate the H-statistic
for each feature pair.

A.4 Computational models

Single neuron models were modelled as a single compartment RC
circuit

av
Cm - = =Zi:gi -(V(t) - Ey)

Where the membrane capacitance is represented by Cyy, the ion
reversal potential E; is modelled as batteries, and the conductance
gi represents the membrane resistivity. The g; functions can be
dependent on voltage, time, and other ion currents, often making
this system highly nonlinear.

In the models below, we set the reversal potentials E; as con-
stants, and changed parameters within the g; functions as features
of the model. The raw output of the model was membrane voltage
recorded from the center of the single compartment representing
the dendrite, and the scalar output was a function of that voltage
trace.

A.4.1 Dendritic model - NMDA. This model, used in Section 3.2.2
reproduces the membrane voltage in the dendrite of a pyramidal
cell [8]. The dendrite was modelled as an isopotential passive cell
20 pm in diameter, with an R,, = 20, 000 Qem?, Cprp = 1 /,tF/cm2
and a resting potential of —70mV [8]. It consists of a leak channel
and two synapses - an excitatory AMPA/NMDA synapse and an
inhibitory GABA 4 synapse. Reversal potentials were Ej. ;. = —70
mV, Eampa = 0 mV, ENypa = 0 mV and Egapa, = —80 mV.
AMPA and GABA 4 synapses were modelled as

[Osyn’t

d

fosyn—?
—e

(1)

Gsyn(t) = Isyn prax " | €
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with the AMPA and GABAy4 rise / decay times being 0.18 / 5 ms
and 0.2 / 1.7 ms, respectively. #o5,, represents the time of synaptic
activation. The NMDA synapse was modelled [23] as

WNMDA™!
e Td

—0.08-V(t) . _L_
1+e () 357

HhNMDA™E
—e r

YNMDA = gNMDAMax *

with the rise / decay times being 2 / 75 ms. In the model used in
Section 3.2.2, we set the features to be the maximum synaptic con-
ductances gNMDApax A0 GGABA 4 ppay> a0d the time difference
between the activation of the two synapses Delay = togapa, —
toNMDA- In all models in this work, the AMPA and NMDA maxi-
mum conductances were equal and represented by the same feature
INMDAMax> as well as the AMPA and NMDA activation times.

The scalar output used was the time integral of the dendritic
membrane voltage /tio(? V(t) + |Vinit| dt, where viyj; is the resting
potential (vini; = -70), and the model was simulated for 300 mil-
liseconds (from ¢t = —100ms to t = 200ms)

A.4.2  Dendritic model - Backpropagating action potential. This
model which was used in Section 3.2.3 simulates the dendrite of a
layer 5 pyramidal cell [18], with additional ion channels and a dy-
namic clamp injection of a Backpropagating action potential (BAP).
The ion channels used in this model are the leak channel, high-
and low- voltage dependent calcium channel, fast- and persistent-
type sodium channels, M-type Potassium channel, and calcium-
and voltage- dependent potassium channels, as described in the
dendritic part of the L5SPC model of [18]. The features of the model
were 9 features controlling these ion channels and the leak current,
as well as three other: synaptic rates and BAP height.

The activation times of the excitatory and inhibitory synapses
were sampled from a Poisson distribution, with the rates being
features of the model. In addition, this model had was injected with
current simulating a BAP arriving to the dendrite from the soma.
The shape of the BAP was recorded from the soma of the full model
of a pyramidal cell [18], and the attenuation of its height was set
to be a feature representing the distance of the dendrite from the
soma.

The feature limits of the ion channel features were set to be
between 90% and 110% of the values specified in [18]. The limits
of the excitatory and inhibitory rates were (300, 2400) ms, and the
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limits of the BAP height were (0%, 100%) of the height of the action
potential measured at the soma.

As before, the scalar output used was the time integral of the
dendritic membrane voltage, and the model was simulated for 100
milliseconds.

A.4.3  Somatic model. In the model used in Section 4.1 we simu-
lated the soma of a layer 5 pyramidal cell under current injection.
The model had no synaptic input, and instead was injected with 0.5
nA for 1400 milliseconds.

The ion channels in this model were: Leak channel, high- and
low- voltage dependent calcium channel, fast- and persistent- type
sodium channels, calcium- and voltage- dependent potassium chan-
nels, and persistent- and transient- potassium channels, as described

in the somatic part of the L5PC model of [18]. The features of the
model were 11 features controlling these ion channels, and their

limits were between 0 and twice the values specified in [18].

The raw output of the model was membrane voltage recorded
from the center of the single compartment representing the soma,
and the scalar output was the interspike interval coefficient of
variance, calculated using the python library BluePyOpt [47]. The
model was simulated for 2000 milliseconds.

A.4.4 NPDZ model. The NPDZ (Nutrient - Phytoplankton - Zoo-
plankton - Detritus) model is commonly used as a simple repre-
sentation of the ecological system in the ocean. The model we
used is based on the equations by [10], set in a 1D model (single
column) of Eilat bay and forced by insolation (measurements by
the national monitoring program) and mixing features (from a 3D
MITgcem specified for the Gulf of Eilat [5]).

The 15 features used for this model were: Growth rate, PON re-
mineralization rate, Nitrate half saturation coefficient, Zooplankton
grazing rate, Grazing half saturation, Mortality rate, Sinking rate
of phytoplankton, Zooplankton mortality rate, Grazing efficiency,
PON sinking rate, light saturation coefficient, light inhibition co-
efficient, and two features controlling the chlorophyll to carbon
ratio. We set the feature limits to be in the range of values found in
literature (e.g., [27, 36]).

The raw output of the model was the size of the phytoplankton
population, and the scalar output was the timing of the peak of the
population.
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